七年级下册数学三角形知识点归纳
在我们的学习时代,说到知识点,大家是不是都习惯性的重视?知识点就是“让别人看完能理解”或者“通过练习我能掌握”的内容。掌握知识点是我们提高成绩的关键!以下是小编帮大家整理的七年级下册数学三角形知识点归纳,欢迎阅读与收藏。
七年级下册数学三角形知识点归纳 篇1
1、三角形的定义
由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形。
三角形有三条边,三个内角,三个顶点。组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点。
2、三角形的表示
三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示。三个顶点用大写字母A,B,C来表示。
注意:
(1)三条线段要不在同一直线上,且首尾顺次相接;
(2)三角形是一个封闭的图形;
(3)△ABC是三角形ABC的符号标记,单独的△没有意义。
3、三角形的主要线段的定义
(1)三角形的中线(在中文中,中有中间的意思而在这里就是边上的中线)
三角形中,连结一个顶点和它对边中点的线段。
表示法:
①AD是△ABC的BC上的中线。
②BD=DC=1/2 BC
注意:
①三角形的中线是线段;
②三角形三条中线全在三角形的内部且交于三角形内部一点(注:这点叫重心:当我们用一条线穿过重心的时候,三角形不会乱晃)
③中线把三角形分成两个面积相等的三角形。
(2)三角形的角平分线
三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段
表示法:
①AD是△ABC的∠BAC的平分线。
②∠1=∠2=∠BAC。
注意:
①三角形的角平分线是线段;
②三角形三条角平分线全在三角形的内部且交于三角形内部一点;(注:这一点角三角形的内心。角平分线的性质:角平分线上的点到角的两边距离相等)
③用量角器画三角形的角平分线。
(3)三角形的高
从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段。
表示法:
①AD是△ABC的BC上的高线
②AD⊥BC于D
③∠ADB=∠ADC=90°。
注意:
①三角形的高是线段;
②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;(三角形三条高所在直线交于一点。这点叫垂心)
③由于三角形有三条高线,所以求三角形的面积的时候就有三种(因为高底不一样)
4、三角形的角与角之间的关系
(1)三角形三个内角的和等于180°;
(2)三角形的一个外角等于和它不相邻的两个内角的和;
(3)三角形的一个外角大于任何一个和它不相邻的内角。
(4)直角三角形的两个锐角互余。
数学加法心算技巧
1、分裂再凑整数加法;
比如;8+5=13,先把“5”分裂成“2”和“3”;那么就是8+2+3=10;
2、比如;77+8=85,先把“8”分裂成“3”和“5”;那么就是77+3+5=85;
3、变整数再减去
比如,26+18=44,把“18”变成“20—2”,那么就是26+20—2=44;
4、比如;387+983=1370,把“983”变成“1000—17”,那么就是387+1000—17=1370;
5、错位数相加
比如,个位加十位得数是个位的;
51+15=66;这样算:5+1得6;1+5得6;两6合拼
72+27=99;这样算:7+2得9;2+7得9;两9合拼
63+36=99;这样算:6+3得9;3+6得9;两9合拼
52+25=77;这样算:5+2得7;2+5得7;两7合拼
6、比如,个位加十位得数是十位的;
78+87=165;这样算:7+8=15,再把“15”两个数字“1”和“5”相加得6,把这个“6”放在“15”的中间,得出“165”;
67+76=143,这样算:6+7=13,再把“13”两个数字“1”和“3”相加得4,把这个“4”放在“13”的中间,得出“143”;
如何学好初中数学
学好初中数学的方法有重视课本的内容、通过联系对比进行辨析、多做练习题、课后总结和反思等等。
七年级下册数学三角形知识点归纳 篇2
1、三角形的分类
三角形按边的关系分类如下:
三角形包括不等边三角形和等腰三角形
等腰三角形 包括底和腰不相等的等腰三角形和等边三角形
三角形按角的关系分类如下:
三角形包括 直角三角形(有一个角为直角的三角形)和斜三角形
斜三角形 包括 锐角三角形(三个角都是锐角的三角形)和 钝角三角形(有一个角为钝 角的三角形)
把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。
2、三角形的三边关系定理及推论
(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
3、三角形的内角和定理及推论
三角形的'内角和定理:三角形三个内角和等于180°。
推论:
①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
4、三角形的面积
三角形的面积=×底×高
全等三角形
1、全等三角形的概念
能够完全重合的两个三角形叫做全等三角形。
2、三角形全等的判定
三角形全等的判定定理:
(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)
(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)
(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
直角三角形全等的判定:
对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)
3、全等变换
只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。
全等变换包括一下三种:
(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
等腰三角形
1、等腰三角形的性质
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
2、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
【七年级下册数学三角形知识点归纳】相关文章:
初三数学下册期末知识点归纳10-22
新人教版七年级数学下册知识点归纳11-16
物理下册知识点归纳09-19
数学重要知识点归纳02-14
初三下册数学知识点归纳09-29
七年级政治下册期末的知识点归纳04-21
数学中考知识点归纳整理02-17
中考数学知识点归纳10-30
数学初一知识点归纳10-09