数学旋转的知识点提纲
在我们的学习时代,相信大家一定都接触过知识点吧!知识点在教育实践中,是指对某一个知识的泛称。为了帮助大家掌握重要知识点,以下是小编精心整理的数学旋转的知识点提纲,供大家参考借鉴,希望可以帮助到有需要的朋友。
数学旋转的知识点提纲1
1、定义
把一个图形绕某一点O转动一个角度的图形变换叫做旋转,其中O叫做旋转中心,转动的角叫做旋转角。
2、性质
(1)对应点到旋转中心的距离相等。
(2)对应点与旋转中心所连线段的夹角等于旋转角。
二、中心对称
1、定义
把一个图形绕着某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心。
2、性质
(1)关于中心对称的两个图形是全等形。
(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。
3、判定
如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。
4、中心对称图形
把一个图形绕某一个点旋转180°,如果旋转后的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个店就是它的对称中心。
考点五、坐标系中对称点的特征(3分)
1、关于原点对称的点的特征
两个点关于原点对称时,它们的坐标的符号相反,即点P(x,y)关于原点的对称点为P’(-x,-y)
2、关于x轴对称的点的特征
两个点关于x轴对称时,它们的坐标中,x相等,y的符号相反,即点P(x,y)关于x轴的对称点为P’(x,-y)
3、关于y轴对称的点的特征
两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反,即点P(x,y)关于y轴的对称点为P’(-x,y)
多做题是学好初中数学的关键
想要学好初中数学,就要多做数学题。只有学生掌握了各种各样的题型,那么你对于初中数学的解题思路才能够了解,这样通过积累就会使自己的解题思路和思维丰富。在刚开始的时候,可以从最简单的基础题入手,学生最好是以课本上的习题为主,一定要将课本上的习题弄懂,这样打好基础,才会为接下来的做其他类型的题最好准备。然后在开始做一些课外的有难度的习题,目的是为了帮助学生开拓自己的思路,提高自己分析能力。
学数学的方法有哪些:
抓好预习环节预习
这是上课前做好接受新知识的准备过程。有些学生由于没有预习习惯,对老师一堂课要讲的内容一无所知,坐等教师讲课,显得呆板被动。有些学生虽能预习,但看起书来却似走马观花,,这种预习一点也达不到效果。
认真做题
课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。
及时纠错
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
总结那些相似的数学题目
当我们养成了总结归纳的习惯,那么初一的学生就会知道自己在解决数学题目的时候哪些是自己比较擅长的,哪些是自己还不足的。
同时善于总结也会明白自己掌握哪些数学的解题方法,只有这样你才能够真正掌握了初一数学的解题技巧。其实,做到总结和归纳是学会数学的关键,如果初一学生不会做到这一点那么久而久之,不会的数学题目还是不会。
数学旋转的知识点提纲2
1. 图形的旋转:在平面内,将一个图形绕一个定点转动一定的.角度,这样的图形运动称为图形的旋转。这个定点称为旋转中心,旋转的角度称为旋转角。
注意:图形旋转后一对对应点与旋转中心的连线就是旋转角。图形的旋转不改变图形的形状、大小,只改变图形的位置.
2. 旋转的基本性质
(1)旋转前、后的图形全等
(2)对应点到旋转中心的距离相等
(3)每一对对应点与旋转中心的连线所成的角彼此相等.
(4)图形的旋转是由旋转中心和旋转的角度决定.
3. 旋转的要素:旋转中心,旋转方向,旋转角度;
4. 明白顺时针旋转和逆时针旋转
5. 中心对阵
中心对称定义:把一个图形绕着某一点旋转180度,如果它能与另一个图形重合,就说这两个图形关于这个点成中心对称. 所有的中心对称图形都是旋转对称图形。
中心对称的性质:
(1)中心对称的两个图形是全等图形
(2)关于中心对称的两个图形,对称点连线都经过对称中心且被对称中心平分
(3)关于中心对称的两个图形,对称线段平行且相等
中心对称与中心对称图形是两个既有联系又有区别的概念
区别: 中心对称指两个全等图形的相互位置关系; 中心对称图形指一个图形本身成中心对称。
联系: 如果将中心对称图形的两个图形看成一个整体,则它们是中心对称图形
如果将中心对称图形,把对称的部分看成两个图形,则它们是关于中心对称。
6. 轴对称
定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这样的图形叫做轴对称图形(axial symmetric figure),这条直线叫做对称轴;这时,我们也说这个图形关于这条直线对称。比如说圆、正方形等。例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对称图形.有的轴对称图形有不止一条对称轴,但轴对称图形最少有一条对称轴. 圆有无数条对称轴,都是经过圆心的直线。
要特别注意线段,有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线.
性质:
(1)对称轴是一条直线。
(2)垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。线段垂直平分线上的点到线段两端的距离相等。
(3)在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
(4)在轴对称图形中,沿对称轴将它对折,左右两边完全重合。
(5)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线
(6)图形对称。
7.总结
轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合.实际区别时轴对称图形要像折纸一样折叠能重合的是轴对称图形;中心对称图形只需把图形倒置,观察有无变化,没变的是中心对称图形。
现将教材中常见的图形归类如下:
既是轴对称图形又是中心对称图形的有:直线,线段,两条相交直线,矩形,菱形,正方形,圆等。
只是轴对称图形的有:射线,角?等腰三角形,等边三角形,等腰梯形等。
只是中心对称图形的有:平行四边形等;中心对称的多边形很多,如边数为偶数的正多边形都是中心对称图形。
既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等。
轴对称图形中心对称图形有一条对称轴——直线有一个对称中心图形沿轴对折图形绕这个点旋转180度对称对折部分与另一部分重合旋转后与原图重合
数学旋转的知识点提纲3
一、平移
1、定义
在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。
2、性质
平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。
二、旋转
1、定义
在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。
2、性质
旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。
【数学旋转的知识点提纲】相关文章:
初三数学旋转知识点归纳10-04
数学复数知识点提纲01-21
旋转初三数学上册知识点10-16
初三数学图形的平移与旋转的知识点09-13
数学必修五数列知识点提纲10-15
九年级数学知识点旋转03-18
数学必修三统计知识点提纲12-10
高一数学知识点提纲09-24
九年级上册旋转数学知识点11-30