数学 百文网手机站

高三数学复习知识点

时间:2021-08-11 16:36:53 数学 我要投稿

高三数学复习知识点

高三数学复习知识点1

  (1)先看“充分条件和必要条件”

高三数学复习知识点

  当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

  但为什么说q是p的必要条件呢?

  事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

  (2)再看“充要条件”

  若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。记作p<=>q

  (3)定义与充要条件

  数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

  显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

  “充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

  (4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

  (1)先看“充分条件和必要条件”

  当命题“若p则q”为真时,可表示为p=>q,则我们称p为q的充分条件,q是p的必要条件。这里由p=>q,得出p为q的充分条件是容易理解的。

  但为什么说q是p的必要条件呢?

  事实上,与“p=>q”等价的逆否命题是“非q=>非p”。它的意思是:若q不成立,则p一定不成立。这就是说,q对于p是必不可少的,因而是必要的。

  (2)再看“充要条件”

  若有p=>q,同时q=>p,则p既是q的充分条件,又是必要条件。简称为p是q的充要条件。

  记作p<=>q

  (3)定义与充要条件

  数学中,只有A是B的充要条件时,才用A去定义B,因此每个定义中都包含一个充要条件。如“两组对边分别平行的四边形叫做平行四边形”这一定义就是说,一个四边形为平行四边形的充要条件是它的两组对边分别平行。

  显然,一个定理如果有逆定理,那么定理、逆定理合在一起,可以用一个含有充要条件的语句来表示。

  “充要条件”有时还可以改用“当且仅当”来表示,其中“当”表示“充分”。“仅当”表示“必要”。

  (4)一般地,定义中的条件都是充要条件,判定定理中的条件都是充分条件,性质定理中的“结论”都可作为必要条件。

高三数学复习知识点2

  一、以史为鉴,从历届考生的经验教训中获取智慧。

  恢复高考制度已有30年历史了。多少人如愿以偿,又有多少人抱憾终身。我们应该推介成功者的经验,比如状元谈高考;但这是远远不够的,我们永远不要忘记失败者的教训。成功者的经验可能各不相同,而失败者的教训大概都是一样的,那么有哪些基本教训值得警惕呢?

  (一)偏离课本──高考知识浩如烟海,把我们的课本湮没了,这是得不偿失的。资料是重要的,一、二轮复习整合资料也是必需的.,但最终资料不能代替课本。《考试 大纲》在考试要求中明确指出:数学高考依据《课程计划》和《考试 大纲》中必修课与选修工作为文科及必修课与选修工作为理科的命题范围。课本作为复习依据的指向应当非常明显。

  事实上,高考试题有相当一部分属于课本中的基本题,或与课本相对应的试题,不应失分。

  (二)题型套路──高考复习应当要有一些题型训练,掌握一些基本的题型,考生在高考答题时才能迅速而正确地检索和判断,但如果是只流于形式,单凭记忆来认定当前问题和基本题型的表面相关,而不是用理性的态度去辨析其中的本质联系,盲目套用是不可取的。切忌似是而非的盲目套用,因为不加思考,自以为是,丧失灵性的套用,可能导致错误。正如考纲中对以“能力立意”的要求是:“侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力。”

  (三)忽略细节──高考强调能力,强调思想方法,强调站在学科整体高度,这些都很重要,但往往又是细节决定成败。

  一个高考题的正确解答涉及若干因素,命题者在选择题的设计中,往往正是考虑到某些因素的可能失缺而设置陷阱的,考试 大纲关于“个性品质要求”中提到:崇尚数学的理性精神,形成审慎思维的习惯,看似细节问题,实质上是在考查个性品质。

高三数学复习知识点3

  符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹。

  轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性)。

  【轨迹方程】就是与几何轨迹对应的代数描述。

  一、求动点的轨迹方程的基本步骤

  ⒈、建立适当的坐标系,设出动点M的坐标;

  ⒉、写出点M的集合;

  ⒊、列出方程=0;

  ⒋、化简方程为最简形式;

  ⒌、检验。

  二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。

  ⒈、直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。

  ⒉、定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。

  ⒊、相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。

  ⒋、参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。

  ⒌、交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。

  直译法:求动点轨迹方程的一般步骤

  ①建系——建立适当的坐标系;

  ②设点——设轨迹上的任一点P(x,y);

  ③列式——列出动点p所满足的关系式;

  ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;

  ⑤证明——证明所求方程即为符合条件的动点轨迹方程。

  1、数列的定义、分类与通项公式

  (1)数列的定义:

  ①数列:按照一定顺序排列的一列数。

  ②数列的项:数列中的每一个数。

  (2)数列的分类:

  分类标准类型满足条件

  项数有穷数列项数有限

  无穷数列项数无限

  项与项间的大小关系递增数列an+1>an其中n∈N

  减数列an+1

  常数列an+1=an

  (3)数列的通项公式:

  如果数列{an}的第n项与序号n之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式。

  2、数列的递推公式

  如果已知数列{an}的首项(或前几项),且任一项an与它的前一项an—1(n≥2)(或前几项)间的关系可用一个公式来表示,那么这个公式叫数列的递推公式。

  3、对数列概念的理解

  (1)数列是按一定“顺序”排列的一列数,一个数列不仅与构成它的“数”有关,而且还与这些“数”的排列顺序有关,这有别于集合中元素的无序性。因此,若组成两个数列的数相同而排列次序不同,那么它们就是不同的两个数列。

  (2)数列中的数可以重复出现,而集合中的元素不能重复出现,这也是数列与数集的区别。

  4、数列的函数特征

  数列是一个定义域为正整数集N_或它的有限子集{1,2,3,…,n})的特殊函数,数列的通项公式也就是相应的函数解析式,即f(n)=an(n∈N_。

  一个推导

  利用错位相减法推导等比数列的前n项和:Sn=a1+a1q+a1q2+…+a1qn—1,

  同乘q得:qSn=a1q+a1q2+a1q3+…+a1qn,

  两式相减得(1—q)Sn=a1—a1qn,∴Sn=(q≠1)。

  两个防范

  (1)由an+1=qan,q≠0并不能立即断言{an}为等比数列,还要验证a1≠0。

  (2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误。

  三种方法

  等比数列的判断方法有:

  (1)定义法:若an+1/an=q(q为非零常数)或an/an—1=q(q为非零常数且n≥2且n∈N_,则{an}是等比数列。

  (2)中项公式法:在数列{an}中,an≠0且a=an·an+2(n∈N_,则数列{an}是等比数列。

  (3)通项公式法:若数列通项公式可写成an=c·qn(c,q均是不为0的常数,n∈N_,则{an}是等比数列。

  注:前两种方法也可用来证明一个数列为等比数列。

高三数学复习知识点4

  1.第一轮复习要做很多习题吗?

  其实 第一轮的目的是 培养 数学思维 做题是为了达到目的,并不在于多难 多多!书后题目 我个人认为 对于你自己对基础知识的理解 对思维方法的建立已经足够。

  2.问 用什么教材好呢?

  我看书时候就是用的 同济四版 高数 概率 线代 书 忘了什么名了。书本再好,还要自己喜欢。:)找一本自己喜欢的吧!其实上学时候用过的就可以,有条件 可以结合一下数学专业的书 目的是达到知识系统化。

  3.在职时间少!怎么办?

  我是毕业后自己在家复习的,根本没找工作 所以相对时间多。对那些在职的哥哥姐姐可能就帮不上什么忙了。但,我认为注意基础是一劳永逸的。

  4.数学作题还是很关键的。光靠教科书上的那些题,行吗?

  对于作题,众说纷纭。我个人认为是关键,但不是最关键的。最关键的,我已经强调过多次----基础。作题是为基础服务的。光做书上的题目对考研究生来说是不够。但对于解决第一轮复习来说 还是够的。以后我会介绍如何进行 第二轮 第三轮 的复习!

  5.基础不错,是不是只需要看书?

  有点不合实际,建议基础好点的同学还是书和教材一起看把,但是每轮复习的时候都要兼顾教材,第一轮以教材为主,第2轮以强化教材,弄清总体结构,巩固定理公式 第3轮把教材上的定理概念,自己想想那些地方容易产生错误,容易出考点! 这是我认为最中肯的建议。而且含金量丰富哦!我说的是思想的建立。无题量之度量,无分数之划分,确实有点不合实际。这个建议补充了我对基础强调的具体方法。大家一定要学习一下~~

  6.看了历年真题基本上都不会做应该怎么办?

  凉办! 放在那里,过一段时间就会了。(好象鲁迅说过)不过一定不要放弃呀!

  7.作题时是看答案还是去看教材?

  这个问题提的有些早。分阶段,有不同的做法。看目的拉。如果你要测试自己的程度,当然要看答案,不过是作完后。现阶段还是看教材,哪里不懂看哪里。产生遗忘,再捡起。最终达到----在心里!

  8.除了课本,我们还需要课外作业吗?

  课本是基础,基础很重要,但决不能拘泥于课本的水平。数学一的题量、难度远非课本所比!03年我将4本教材连习题全过了一遍,用时过长,结果影响了第二轮综合复习和第三轮冲刺模拟,结果73分。烤研的数学题是又多又难,在掌握了一定的基础以后,谁的冲刺模拟卷作得早、作得多,谁的分就高。一般是10月开始作模拟题,有的8月就开始了,而我11月底才开始模拟,由于时间太紧实际上根本没怎么练。上了考场才发现平时作课本的流畅不见了,明显反应速度慢!感觉自己跟题不是一个境界的!所以以自己的教训苦柬04考友,重要是速度和难度!在课本上不能花太长时间。

  这个很明显是肺腑之言啊!20xx年的考试数学之所以低,好多是因为题量大,没答完造成的。但具体做法,我不枉加评论。但有一点要知道,模拟冲刺效果的好坏,直接取决于你基础(即第一轮)复习的好坏。所以对于基础差点的 还是要稳扎稳打。多做基础题目,你也可以提高解题速度。难题分解开来不过是基础题目的堆砌!

  9.如何把握心情心态?

  充实过好每一天!晚上睡的自然香。睡的好,第二天,会更充实。建议找个志同的异性考研战友,男女搭配学习不累,更可以互相督处!我身边有好多成功的例子呢~~(不许歪想)

  10.难题难 怀疑只看课本可否?

  我再次声明,我只是说第一轮的重点是什么。以后如何进行,我要等复试结束后写给大家方法。如果你真正理解了什么是数学,你会发现----难题都只不过是简单题目的堆砌

高三数学复习知识点5

  不仅要学会解题,更要学会思考问题的方法。学数学需要解题,但解题不是数学的全部,数学思想方法是数学的灵魂。不掌握数学思想方法的解题是蛮干,学数学而不解题则

  是“进了宝山空手而归”,不能掌握数学的真谛。

  做题不在多。做了一定量的基础题后,基本方法掌握了,解题速度也快了,再做类似的题目就是典型的重复操练,耗时而无效。做题贵在精。在解题过程中要体会该题是复习、巩固哪些知识点,使用那些技能技巧,用到哪些数学思想方法,哪些地方自己还不熟练,还要适当加强训练等。

  不仅要关注考试的分数,更要找出我们创新能力方面的不足。分数高低能说明你掌握知识的多少,但不一定或不完全能反映你的能力尤其是创新能力的高低。因此,在学习过程中一定要独立思考,认真总结规律,认真、按时完成作业。千万不要抄作业,那是自欺欺人的行为,也给老师提供了错误的信息。不会做可以空在那儿,老师会安排时间评讲,采取补救措施。对不会做的题目,提倡不耻下问,但在问前一定要思考,否则,懂得快,忘得也快。

  不仅要熟悉理论知识,更要关注其应用。学习的目的是为了应用。在应用的过程中发现问题,解决问题,提高能力。

  不仅要有决心和信心,更要有脚踏实地的干劲。每位同学都有达到自己目标的信心和决心。但光有信心和决心还不够,必须针对实际情况,制订切实可行的学习计划和可操作的具体措施,并落实到学习的每个环节中去。

  不仅要得到正确答案,更要注重解题过程(细节)。有时只是一个符号的误差,会让你体会到“失之毫厘,差之千里”的滋味,若在关键时候会让你抱憾终生。美国“哥伦比亚”号航天飞机返回地面时机毁人亡却源于一块绝缘瓦的故障。这些学习品质在以后工作中会让你受用终生。

  不仅要刻苦学习,更要讲究科学方法。不讲究方法的“刻苦”无异于蛮干。应该在理清基本概念、基本知识结构的基础上去做题,有时也可以在做题中加深对基础知识的理解。不注意总结解题规律和数学思想方法的解题是低效的,有时甚至是无意义的。

  不仅要做知识的接受者、拥有者,更要通过对数学的学习、理解来提高自己的文化素养。比如,数学要求推力严谨,步步有据,这就要求“马大哈”改变“粗心”的习惯。知识是可以量化的“知道”,必须让知识渗透到你的生活与行为,才能称之为素养。知识和素养的共同提高必然导致素质的提高。在高三数学复习中应该注意体会这一点。

【高三数学复习知识点】相关文章:

高三数学知识点复习整理分享12-15

高三数学复习策略05-14

高三数学复习口诀05-14

高三数学复习大纲05-14

高三数学复习规划05-14

高考数学复习知识点08-24

高三化学复习知识点12-20

高三历史复习知识点09-29

最新高三数学复习知识点整理五篇分享12-07