高二简单的逻辑联结词的数学复习要点
在科学发展和现代生活生产中的应用非常广泛,以下是数学网为大家整理的期中考试高二数学章节复习要点,希望可以解决您所遇到的相关问题,加油,数学网一直陪伴您。
一、简单的逻辑联结词
1.用联结词且联结命题p和命题q,记作pq,读作p且q.
2.用联结词或联结命题p和命题q,记作pq,读作p或q.
3.对一个命题p全盘否定,就得到一个新命题,记作綈p,读作非p或p的否定.
4.命题pq,pq,綈p的真假判断:
pq中p、q有一假为假,pq有一真为真,p与非p必定是一真一假.
二、全称量词与存在量词
1.全称量词与全称命题
(1)短语所有的任意一个在逻辑中通常叫做全称量词,并用符号表示.
(2)含有全称量词的命题,叫做全称命题.
(3)全称命题对M中任意一个x,有p(x)成立可用符号简记为xM,p(x),读作对任意x属于M,有p(x)成立.
2.存在量词与特称命题
(1)短语存在一个至少有一个在逻辑中通常叫做存在量词,并用符号表示.
(2)含有存在量词的命题,叫做特称命题.
(3)特称命题存在M中的一个x0,使p(x0)成立可用符号简记为x0M,P(x0),读作存在M中的元素x0,使p(x0)成立.
三、含有一个量词的命题的否定
命题 | 命题的否定 |
xM,p(x) | x0M,綈p(x0) |
x0M,p(x0) | xM,綈p(x) |
四、解题思路
1.逻辑联结词与集合的关系
或、且、非三个逻辑联结词,对应着集合运算中的并、交、补,因此,常常借助集合的并、交、补的意义来解答由或、且、非三个联结词构成的命题问题.
2.正确区别命题的.否定与否命题
否命题是对原命题若p,则q的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;命题的否定即非p,只是否定命题p的结论. 命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系.
3.全称命题真假的判断方法
(1)要判断一个全称命题是真命题,必须对限定的集合M中的每一个元素x,证明p(x)成立;
(2)要判断一个全称命题是假命题,只要能举出集合M中的一个特殊值x=x0,使p(x0)不成立即可.
4.特称命题真假的判断方法
要判断一个特称命题是真命题,只要在限定的集合M中,找到一个x=x0,使p(x0)成立即可,否则这一特称命题就是假命题.
【高二简单的逻辑联结词的数学复习要点】相关文章:
简单随机抽样高二数学的复习要点05-09
必修3高二数学《统计》复习要点05-09
高二数学下册任意角的复习要点05-09
高二物理复习要点01-19
GRE数学复习要点05-12
寒假复习数学的要点05-12
数学复习知识要点05-10
小升初数学复习要点09-29