数学 百文网手机站

八年级数学上册知识点

时间:2021-08-10 09:03:11 数学 我要投稿

八年级数学上册知识点

八年级数学上册知识点1

  1、刻画数据的集中趋势(平均水平)的量:平均数 、众数、中位数

八年级数学上册知识点

  2、平均数

  平均数:一般地,对于n个数,我们把它们的和与n之商叫做这n个数的算术平均数,简称平均数。

  加权平均数。

  3、众数

  一组数据中出现次数最多的那个数据叫做这组数据的众数。

  4、中位数

  一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

  第七章 平行线的证明

  1、平行线的性质

  一般地,如果两条线互相平行的直线被第三条直线所截,那么同位角相等,内错角相等,同旁内角互补。

  也可以简单的说成:

  两直线平行,同位角相等;

  两直线平行,内错角相等;

  两直线平行,同旁内角互补。

  2、判定平行线

  两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

  也可以简单说成:

  同位角相等两直线平行 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行;如果同旁内角互补,那么这两条直线平行。

  其他两条可以简单说成:

  内错角相等两直线平行

  同旁内角相等两直线平行

八年级数学上册知识点2

  1、二元一次方程

  ①二元一次方程

  含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

  ②二元一次方程的解

  适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

  2、二元一次方程组

  ①含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

  ②二元一次方程组的解

  二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

  ③二元一次方程组的解法

  代入(消元)法

  加减(消元)法

  ④一次函数与二元一次方程(组)的关系:

  一次函数与二元一次方程的关系:

  直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解

  一次函数与二元一次方程组的关系:

  二元一次方程组

  的解可看作两个一次函数

  和 的图象的交点。

  当函数图象有交点时,说明相应的二元一次方程组有解;

  当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。

八年级数学上册知识点3

  1、实数的概念及分类

  ①实数的分类

  ②无理数

  无限不循环小数叫做无理数。

  在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:

  开方开不尽的数,如 √7 ,3 √2等;

  有特定意义的数,如圆周率π,或化简后含有π的数,如π /?+8等;

  有特定结构的数,如0.1010010001…等;

  某些三角函数值,如sin60°等

  2、实数的倒数、相反数和绝对值

  ①相反数

  实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=-b,反之亦成立。

  ②绝对值

  在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。|a|≥0。0的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。

  ③倒数

  如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。0没有倒数。

  ④数轴

  规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

  解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

  ⑤估算

  3、平方根、算数平方根和立方根

  ①算术平方根

  一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。

  性质:正数和零的算术平方根都只有一个,0的算术平方根是0。

  ②平方根

  一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。

  性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

  开平方求一个数a的平方根的运算,叫做开平方。注意 √a的双重非负性:√a≥0 ; a≥0

  ③立方根

  一般地,如果一个数x的立方等于a,即x3=a,那么这个数x就叫做a 的立方根(或三次方根)。

  表示方法:记作 3 √a

  性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

  注意:- 3 √a=3 √-a,这说明三次根号内的负号可以移到根号外面。

  4、实数大小的比较

  ①实数比较大小

  正数大于零,负数小于零,正数大于一切负数;

  数轴上的两个点所表示的数,右边的总比左边的大;

  两个负数,绝对值大的反而小。

  ②实数大小比较的几种常用方法

  数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

  求差比较:设a、b是实数 a-b>0a>b; a-b=0a=b; a-b<0a<b 。

  求商比较法:设a、b是两正实数,

  绝对值比较法:设a、b是两负实数,则∣a∣>∣b∣a<b。

  平方法:设a、b是两负实数,则 a2>b2a<b 。

  5、算术平方根有关计算(二次根式)

  ①含有二次根号“ √ ”;被开方数a必须是非负数。

  ②性质:

  ③运算结果若含有“ √ ”形式,必须满足:

  被开方数的因数是整数,因式是整式

  被开方数中不含能开得尽方的因数或因式

  6、实数的运算

  ①六种运算:加、减、乘、除、乘方 、开方。

  ②实数的运算顺序

  先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

  ③运算律

  加法交换律 a+b= b+a

  加法结合律 (a+b)+c= a+( b+c )

  乘法交换律 ab= ba

  乘法结合律 (ab)c = a( bc )

  乘法对加法的分配律 a( b+c )=ab+ac

八年级数学上册知识点4

  1、确定位置

  在平面内,确定物体的位置一般需要两个数据。

  2、平面直角坐标系及有关概念

  ①平面直角坐标系

  在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

  ②坐标轴和象限

  为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

  注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。

  ③点的坐标的概念

  对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。

  点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的.位置不能颠倒。平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标。

  平面内点的与有序实数对是一一对应的。

  ④不同位置的点的坐标的特征

  a、各象限内点的坐标的特征

  点P(x,y)在第一象限→ x>0,y>0

  点P(x,y)在第二象限 → x<0,y>0

  点P(x,y)在第三象限 → x<0,y<0

  点P(x,y)在第四象限 → x>0,y<0

  b、坐标轴上的点的特征

  点P(x,y)在x轴上 → y=0,x为任意实数

  点P(x,y)在y轴上 → x=0,y为任意实数

  点P(x,y)既在x轴上,又在y轴上→ x,y同时为零,即点P坐标为(0,0)即原点

  c、两条坐标轴夹角平分线上点的坐标的特征

  点P(x,y)在第一、三象限夹角平分线(直线y=x)上 → x与y相等

  点P(x,y)在第二、四象限夹角平分线上 → x与y互为相反数

  d、和坐标轴平行的直线上点的坐标的特征

  位于平行于x轴的直线上的各点的纵坐标相同。

  位于平行于y轴的直线上的各点的横坐标相同。

  e、关于x轴、y轴或原点对称的点的坐标的特征

  点P与点p’关于x轴对称 横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)

  点P与点p’关于y轴对称 纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)

  点P与点p’关于原点对称,横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)

  f、点到坐标轴及原点的距离

  点P(x,y)到坐标轴及原点的距离:

  点P(x,y)到x轴的距离等于 ∣y∣

  点P(x,y)到y轴的距离等于 ∣x∣

  点P(x,y)到原点的距离等于 √x2+y2

  3、坐标变化与图形变化的规律

八年级数学上册知识点5

  三角形的外角:

  三角形的一条边的延长线和另一条相邻的边组成的角,叫做三角形的外角。

  三角形的外角特征:

  ①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;

  ②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;

  ③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。

  性质:

  ①. 三角形的外角与它相邻的内角互补。

  ②. 三角形的一个外角等于和它不相邻的两个内角的和。

  ③. 三角形的一个外角大于任何一个和它不相邻的内角。

  ④. 三角形的外角和等于360°。

  设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。

  定理:三角形的一个外角等于不相邻的两个内角和。

  定理:三角形的三个内角和为180度。

八年级数学上册知识点6

  1、函数

  一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

  2、自变量取值范围

  使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

  3、函数的三种表示法及其优缺点

  关系式(解析)法

  两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

  列表法

  把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

  图象法

  用图象表示函数关系的方法叫做图象法。

  4、由函数关系式画其图像的一般步骤

  列表:列表给出自变量与函数的一些对应值。

  描点:以表中每对对应值为坐标,在坐标平面内描出相应的点。

  连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

  5、正比例函数和一次函数

  ①正比例函数和一次函数的概念

  一般地,若两个变量x,y间的关系可以表示成y=kx+b (k,b为常数,k不等于 0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

  特别地,当一次函数y=kx+b中的b=0时(k为常数,k 不等于0),称y是x的正比例函数。

  ②一次函数的图像:

  所有一次函数的图像都是一条直线。

  ③一次函数、正比例函数图像的主要特征

  一次函数y=kx+b的图像是经过点(0,b)的直线;

  正比例函数y=kx的图像是经过原点(0,0)的直线。

  ④正比例函数的性质

  一般地,正比例函数 有下列性质:

  当k>0时,图像经过第一、三象限,y随x的增大而增大;

  当k<0时,图像经过第二、四象限,y随x的增大而减小。

  ⑤一次函数的性质

  一般地,一次函数 有下列性质:

  当k>0时,y随x的增大而增大;

  当k<0时,y随x的增大而减小。

  ⑥正比例函数和一次函数解析式的确定

  确定一个正比例函数,就是要确定正比例函数定义式y=kx(k 不等于0)中的常数k。

  确定一个一次函数,需要确定一次函数定义式y=kx+b(k 不等于0)中的常数k和b。解这类问题的一般方法是待定系数法.

  ⑦一次函数与一元一次方程的关系

  任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式。而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0)。当函数值为0时,即kx+b=0就与一元一次方程完全相同。

  结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式。所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值。

  从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值。

八年级数学上册知识点7

  第五章 二元一次方程组

  1、二元一次方程

  ①二元一次方程、含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

  ②二元一次方程的解、适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

  2、二元一次方程组

  ①含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

  ②二元一次方程组的解二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。

  ③二元一次方程组的解法代入(消元)法、加减(消元)法

  ④一次函数与二元一次方程(组)的关系:

  一次函数与二元一次方程的关系:直线y=kx+b上任意一点的坐标都是它所对应的二元一次方程kx- y+b=0的解

  一次函数与二元一次方程组的关系:二元一次方程组的解可看作两个一次函数和的图象的交点。

  当函数图象有交点时,说明相应的二元一次方程组有解;

  当函数图象(直线)平行即无交点时,说明相应的二元一次方程组无解。

【八年级数学上册知识点】相关文章:

数学八年级上册知识点12-07

数学上册知识点08-02

八年级上册重要的数学知识点11-02

八年级上册数学实数知识点01-14

数学八年级上册“近似数”知识点03-04

数学人教版八年级上册知识点07-31

数学八年级上册知识点15篇01-23

数学八年级上册十三章知识点11-17

八年级上册人教版数学知识点03-19