数学之圆知识点
圆虽然是最熟悉的几何图形之一,但它有很多新的知识点,尤其是这里重要的知识点,都与前面的知识紧密联系着,下面是小编整理的初中数学之圆知识点,欢迎大家阅读分享借鉴。
数学之圆知识点1
圆的周长公式C=2π r 中的π是定义;
圆的面积公式S=π*r*r,
圆周率是指平面上圆的周长与直径之比。用希腊字母 π (读"Pài")表示。中国古代有圆率、周率、周等名称。(在一般计算时π人们都把π这无限不循环小数化成3.14)
圆周率—π
什么是圆周率?
圆周率是一个常数,是代表圆周和直径的比例。它是一个无理数,即是一个无限不循环小数。但在日常生活中,通常都用3.14来代表圆周率去进行计算,即使是工程师或物理学家要进行较精密的计算,也只取值至小数点后约20位。
什么是π?
π是第十六个希腊字母,本来它是和圆周率没有关系的,但大数学家欧拉在一七三六年开始,在书信和论文中都用π来代表圆周率。既然他是大数学家,所以人们也有样学样地用π来表圆周率了。但π除了表示圆周率外,也可以用来表示其他事物,在统计学中也能看到它的出现。
(背圆周率的口诀】
3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6
山巅一寺一壶酒,尔乐苦煞吾,把酒吃,酒杀尔,杀不死,乐尔乐。
4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7
死珊珊,霸占二妻。救我灵儿吧!不只要救妻,一路救三舅,救三妻。
5 1 0 5 8 2 0 9 7 4 9 4 4 5 9 2 3 0 7
我一拎我爸,二拎舅(其实就是撕我舅耳)三拎妻。
8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6
不要溜!司令溜,儿不溜!儿拎爸,久久不溜!
数学之圆知识点2
1、圆是由一条曲线围成的平面图形。(以前所学的图形如长方形、梯形等都是由几条线段围成的平面图形)
2、画圆时,针尖固定的一点是圆心,通常用字母O表示;连接圆心和圆上任意一点的线段是半径,通常用字母r表示;通过圆心并且两端都在圆上的线段是直径,通常用字母d表示。在同一个圆里,有无数条半径和直径。在同一个圆里,所有半径的长度都相等,所有直径的长度都相等。
3、用圆规画圆的过程:先两脚叉开,再固定针尖,最后旋转成圆。画圆时要注意:针尖必须固定在一点,不可移动;两脚间的距离必须保持不变;要旋转一周。
4、在同一个圆里,半径是直径的一半,直径是半径的2倍。(d=2r, r=d2)
5、圆是轴对称图形,有无数条对称轴,对称轴就是直径。
6、圆心决定圆的位置,半径决定圆的大小。所以要比较两圆的大小,就是比较两个圆的直径或半径。
7、正方形里最大的圆。两者联系:边长=直径
画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。
8、长方形里最大的圆。两者联系:宽=直径
画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。
9、同一个圆内的所有线段中,圆的直径是最长的。
10、车轮滚动一周前进的路程就是车轮的周长。
每分前进米数(速度)=车轮的周长转数
11、任何一个圆的周长除以它直径的商都是一个固定的数,我们把它叫做圆周率。
用字母(读pi)表示。是一个无限不循环小数。=3.141592653
我们在计算时,一般保留两位小数,取它的近似值3.14.3.14
12、如果用C表示圆的周长,那么C=d或C = 2r
13、求圆的半径或直径的方法:d = C圆 r= C圆 2= C圆2
14、半圆的周长等于圆周长的一半加一条直径。 C半圆= r+2r C半圆= d2+d
15、常用的3.14的倍数:
3.142=6.28 3.143=9.42 3.144=12.56 3.145=15.7 3.146=18.84
3.147=21.98 3.148=25.12 3.149=28.26 3.1412=37.68 3.1414=43.96
3.1416=50.24 3.1418=56.52 3.1424=75.36 3.1425=78.5
3.1436=113.04 3.1449=153.86 3.1464=200.96 3.1481=254.34
16、圆的面积公式:S圆=r2。圆的面积是半径平方的倍。
17、圆的面积推导:圆可以切拼成近似的长方形,长方形的面积与圆的面积相等(即S长方形=S圆);长方形的宽是圆的半径(即b=r);长方形的长是圆周长的一半(即a=2(C)=r)。即:S长方形= a b
S圆 = r r= r2
S圆 = r2
注意:切拼后的长方形的周长比圆的周长多了两条半径。C长方形=2r+2r=C圆+d
18、半圆的面积是圆面积的一半。S半圆=r22
19、大小两个圆比较,半径的倍数=直径的倍数=周长的倍数,
面积的倍数=半径的倍数2
20、周长相等的平面图形中,圆的面积最大;面积相等的平面图形中,圆的周长最短。
21、求圆环的面积一般是用外圆的面积减去内圆的面积,还可以利用乘法分配律进行简便计算。S圆环=r2=(R2-r2)
22、常用的平方数:112=121 122=144 132=169 142=196 152=225
162=256 172=289 182=324 192=361 202=400
数学之圆知识点3
1、 圆的有关概念:
(1)、确定一个圆的要素是圆心和半径。
(2)
①连结圆上任意两点的线段叫做弦。
②经过圆心的弦叫做直径。
③圆上任意两点间的部分叫做圆弧,简称弧。
④小于半圆周的圆弧叫做劣弧。
⑤大于半圆周的圆弧叫做优弧。
⑥在同圆或等圆中,能够互相重合的弧叫做等弧。
⑦顶点在圆上,并且两边和圆相交的角叫圆周角。
⑧经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。
⑨与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。
2、 圆的有关性质
(1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。
(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论1:
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。
(3)圆周角定理:一条弧所对的圆周角等于该弧所对的圆心角的一半。推论1在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。推论2半圆或直径所对的圆周角都相等,都等于90 。90 的圆周角所对的弦是圆的直径。推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
(4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。
(5)定理:不在同一条直线上的三个点确定一个圆。
(6)圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长;切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角。
(7)圆内接四边形对角互补,一个外角等于内对角;圆外切四边形对边和相等;
(8)弦切角定理:弦切角等于它所它所夹弧对的圆周角。
(9)和圆有关的比例线段:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段长的积相等。
(10)两圆相切,连心线过切点;两圆相交,连心线垂直平分公共弦。
数学之圆知识点4
一、圆
1、圆的有关性质
在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。
由圆的意义可知:
圆上各点到定点(圆心O)的距离等于定长的点都在圆上。
就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。心的距离小于半径的点的集合。
圆的外部可以看作是到圆心的距离大于半径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。
圆心相同,半径不相等的两个圆叫同心圆。
能够重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的弧叫等弧。
二、过三点的圆
l、过三点的圆
过三点的圆的作法:利用中垂线找圆心
定理不在同一直线上的'三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法
反证法的三个步骤:
①假设命题的结论不成立;
②从这个假设出发,经过推理论证,得出矛盾;
③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角
则两个钝角之和>180°
与三角形内角和等于180°矛盾。
∴不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径
圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。
推理2:圆两条平行弦所夹的弧相等。
四、圆心角、弧、弦、弦心距之间的关系
圆是以圆心为对称中心的中心对称图形。
实际上,圆绕圆心旋转任意一个角度,都能够与原来的图形重合。
顶点是圆心的角叫圆心角,从圆心到弦的距离叫弦心距。
定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。
推理:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。
五、圆周角
顶点在圆上,并且两边都和圆相交的角叫圆周角。
推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推理2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。
推理3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
由于以上的定理、推理,所添加辅助线往往是添加能构成直径上的圆周角的辅助线。
数学之圆知识点5
数学圆的知识点
1.平面上到定点的距离等于定长的所有点组成的图形叫做圆。定点称为圆心,定长称为半径。
2.圆上任意两点间的部分叫做圆弧,简称弧。大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。
3.顶点在圆心上的角叫做圆心角。顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。
4.过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。
5.直线与圆有3种位置关系:无公共点为相离;有2个公共点为相交;圆与直线有公共点为相切,这条直线叫做圆的切线,这个的公共点叫做切点。
6.两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有公共点的,一圆在另一圆之外叫外切,在之内叫内切;有2个公共点的叫相交。两圆圆心之间的距离叫做圆心距。
7.在圆上,由2条半径和一段弧围成的图形叫做扇形。圆锥侧面展开图是一个扇形。这个扇形的半径成为圆锥的母线。
圆--⊙半径—r弧--⌒直径—d
扇形弧长/圆锥母线—l周长—C面积—S三、有关圆的基本性质与定理(27个)
1.点P与圆O的位置关系(设P是一点,则PO是点到圆心的距离):
P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO
2.圆是轴对称图形,其对称轴是任意一条过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
3.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
4.在同圆或等圆中,如果2个圆心角,2个圆周角,2条弧,2条弦中有一组量相等,那么他们所对应的其余各组量都分别相等。
5.一条弧所对的圆周角等于它所对的圆心角的一半。
6.直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
7.不在同一直线上的3个点确定一个圆。
8.一个三角形有确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形3个顶点距离相等;内切圆的圆心是三角形各内角平分线的交点,到三角形3边距离相等。
9.直线AB与圆O的位置关系(设OP⊥AB于P,则PO是AB到圆心的距
离):
AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO
10.圆的切线垂直于过切点的直径;经过直径的一端,并且垂直于这条直径的直线,是这个圆的切线。
11.圆与圆的位置关系(设两圆的半径分别为R和r,且R≥r,圆心距为P):
外离P>R+r;外切P=R+r;相交R-r
1.圆的周长C=2πr=πd
2.圆的面积S=s=πr?
3.扇形弧长l=nπr/180
4.扇形面积S=nπr?/360=rl/2
5.圆锥侧面积S=πrl
数学学习方法
1.先看笔记后做作业。
有的同学感到,老师讲过的,自己已经听得明明白白了。但是为什么你这么做有那么多困难呢?原因是学生对教师所说的理解没有达到教师要求的水平。
因此,每天做作业之前,我们必须先看一下课本的相关内容和当天的课堂笔记。能否如此坚持,常常是好学生与差学生的最大区别。尤其是当练习不匹配时,老师通常没有刚刚讲过的练习类型,因此它们不能被比较和消化。如果你不重视这个实施,在很长一段时间内,会造成很大的损失。
2.做题之后加强反思。
学生一定要明确,现在正做着的题,一定不是考试的题目。但使用现在做主题的解决问题的思路和方法。因此,我们应该反思我们所做的每一个问题,并总结我们自己的收获。
要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串。日复一日,建立科学的网络系统的内容和方法。俗话说: 有钱难买回头看 。做完作业,回头细看,价值极大。这一回顾,是学习过程中一个非常重要的环节。
我们应该看看我们做得对不对;还有什么解决办法;问题在知识体系中的地位是什么;解决办法的实质是什么;问题中的知识是否可以与我们所要求的交换,以及我们是否可以作出适当的补充或删除。有了以上五个回头看,解题能力才能与日俱增。投入的时间虽少,效果却很大。可称为事半功倍。
有人认为,要想学好数学,只要多做题,功到自然成。数学要不要刷题?一般说做的题太少,很多熟能生巧的问题就会无从谈起。因此,应该适当地多刷题。但是,只顾钻入题海,堆积题目,在考试中一般也是难有作为的。要把提高当成自己的目标,要把自己的活动合理地系统地组织起来,要总结反思,进行章节总结是非常重要的。
数学学习技巧
养成良好的课前和课后学习习惯:在当前高中数学学习中,培养正确的学习习惯是一项重要的学习技能。虽然有一种刻板印象的猜疑,但在高中数学学习真的是反复尝试和错误的。学生们不得不预习课本。我准备的数学教科书不是简单的阅读,而是一个例子,至少十分钟的思考。在使用前不能通过学习知识解决问题的情况下,可以在教学内容中找到答案,然后在教材中考察问题的解决过程,掌握解决问题的思路。同时,在课堂上安排笔记也是必要的。在高中数学研究中,建议采用两种形式的笔记,一种是课堂速记,另一种是课后笔记。这不仅提高了课堂记忆的吸收能力,而且有助于对笔记内容的查询。
数学之圆知识点6
圆的一般方程
圆的标准方程是一个关于x和y的二次方程,将它展开并按x、y的降幂排列,得:
x+y—2ax—2by+a+b—R=0
设D=—2a,E=—2b,F=a+b—R;则方程变成:
x+y+Dx+Ey+F=0
任意一个圆的方程都可写成上述形式。把它和下述的一般形式的二元二次方程比较,可以看出它有这样的特点:
(1)x2项和y2项的系数相等且不为0(在这里为1);
(2)没有xy的乘积项。
Ax+Bxy+Cy+Dx+Ey+F=0
圆的端点式:
若已知两点A(a1,b1),B(a2,b2),则以线段AB为直径的圆的方程为(x—a1)(x—a2)+(y—b1)(y—b2)=0
圆的离心率e=0,在圆上任意一点的曲率半径都是r。
经过圆x+y=r上一点M(a0,b0)的切线方程为a0·x+b0·y=r
在圆(x+y=r)外一点M(a0,b0)引该圆的两条切线,且两切点为A,B,则A,B两点所在直线的方程也为a0·x+b0·y=r。
圆的性质有哪些
1、圆是定点的距离等于定长的点的集合
2、圆的内部可以看作是圆心的距离小于半径的点的集合
3、圆的外部可以看作是圆心的距离大于半径的点的集合
4、同圆或等圆的半径相等。
圆是一种几何图形,指的是平面中到一个定点距离为定值的所有点的集合。这个给定的点称为圆的圆心。作为定值的距离称为圆的半径。当一条线段绕着它的一个端点在平面内旋转一周时,它的另一个端点的轨迹就是一个圆。圆的直径有无数条;圆的对称轴有无数条。圆的直径是半径的2倍,圆的半径是直径的一半。
用圆规画圆时,针尖所在的点叫做圆心,一般用字母O表示。连接圆心和圆上任意一点的线段叫做半径,一般用字母r表示,半径的长度就是圆规两个角之间的距离。通过圆心并且两端都在圆上的线段叫做直径,一般用字母d表示。
数学指数与指数幂的运算
1、根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈x。
当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数。此时,的次方根用符号表示。式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。
当是偶数时,正数的次方根有两个,这两个数互为相反数。此时,正数的正的次方根用符号表示,负的次方根用符号—表示。正的次方根与负的次方根可以合并成±(>0)。由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时,
2、分数指数幂
正数的分数指数幂的意义,规定:
0的正分数指数幂等于0,0的负分数指数幂没有意义
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。
数学的学习方法
1、养成良好的学习数学习惯。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。良好的学习数学习惯包括课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。
2、及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。
3、逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。
4、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
数学之圆知识点7
1、圆的定义
平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的方程
(x-a)^2+(y-b)^2=r^2
(1)标准方程,圆心(a,b),半径为r;
(2)求圆方程的方法:
一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程,
需求出a,b,r;若利用一般方程,需要求出D,E,F;
另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。
3、直线与圆的位置关系
直线与圆的位置关系有相离,相切,相交三种情况:
(1)设直线,圆,圆心到l的距离为,则有;;
(2)过圆外一点的切线:
①k不存在,验证是否成立
②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】
(3)过圆上一点的切线方程:圆(x-a)2+(y-b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0-a)(x-a)+(y0-b)(y-b)= r2
【数学之圆知识点】相关文章:
中考数学知识点之圆的总结07-16
中考数学圆知识点07-22
小学数学圆的知识点07-19
高考数学圆的知识点07-31
数学圆知识点归纳01-20
初中数学试题精选之圆08-31
中考数学圆必考知识点07-22
初中数学中考圆知识点07-25
中考数学圆知识点总结07-25