七年级上册数学角的和与差的知识点

时间:2024-07-18 09:16:06 金磊 数学 我要投稿
  • 相关推荐

七年级上册关于数学角的和与差的知识点

  在平时的学习中,大家都没少背知识点吧?知识点也可以通俗的理解为重要的内容。那么,都有哪些知识点呢?以下是小编为大家收集的七年级上册关于数学角的和与差的知识点,希望能够帮助到大家。

七年级上册关于数学角的和与差的知识点

  七年级上册数学角的和与差的知识点 1

  1、角的组成:角是由一个顶点、两条边组成的。

  2、角的大小与角的两条边的长短没有关系,跟角的开口大小有关系:角的开口越大,角就越大;开口越小,角就越小。

  3、角的分类,按照角的大小可以分成:锐角、直角、钝角(平角、周角本学期不需要掌握,孩子知道即可,课上讲过)

  4、锐角:比直角小的角叫锐角,也就是:锐角<90°(角的`度数不要求掌握,了解即可)

  直角:度数是90°的角叫直角,也就是:直角=90°。

  钝角:比直角大比平角小的角叫钝角,也就是:90°<钝角<180°

  5、做题时,如果让画出一个什么角,画完后一定要有一个表示角的小标志,即直角是一个直的小折线,钝角锐角都是小弧线

  是否标出顶点和边要看题目具体要求。

  6、做题时,如果具体到某个角上,一定要用∠1∠2∠3等表示,不能只填序号。

  七年级上册数学角的和与差的知识点 2

  角的种类:角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。

  锐角:大于0°,小于90°的角叫做锐角。

  直角:等于90°的角叫做直角。

  钝角:大于90°而小于180°的角叫做钝角。

  平角:等于180°的'角叫做平角。

  优角:大于180°小于360°叫优角。

  劣角:大于0°小于180°叫做劣角,锐角、直角、钝角都是劣角。

  周角:等于360°的角叫做周角。

  负角:按照顺时针方向旋转而成的角叫做负角。

  正角:逆时针旋转的角为正角。

  0角:等于零度的角。

  余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。

  对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。

  还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!

  七年级上册数学角的和与差的知识点 3

  1、角:由公共端点的两条射线所组成的图形叫做角。

  2、角的表示法(四种):

  3、角的度量单位及换算

  4、角的分类

  锐角 直角 钝角 平角 周角

  范围 090=90 90 =180=360

  5、角的比较方法

  (1)度量法

  (2)叠合法

  6、角的和、差、倍、分及其近似值

  7、画一个角等于已知角

  (1)借助三角尺能画出15的倍数的角,在0~180之间共能画出11个角。

  (2)借助量角器能画出给定度数的角。

  (3)用尺规作图法。

  8、角的`平线线

  定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做角的平分线。

  图形:

  符号:

  9、互余、互补

  (1)若2=90,则1与2互为余角。其中1是2的余角,2是1的余角。

  (2)若2=180,则1与2互为补角。其中1是2的补角,2是1的补角。

  (3)余(补)角的性质:等角的补(余)角相等。

  10、方向角

  (1)正方向

  (2)北(南)偏东(西)方向

  (3)东(西)北(南)方向

  七年级上册数学角的和与差的知识点 4

  一、三角形的有关概念

  1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

  三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。

  2.三角形中的三条重要线段:角平分线、中线、高

  (1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  (2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  (3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

  二、等腰三角形的性质和判定

  (1)性质

  1.等腰三角形的两个底角相等(简写成"等边对等角")。

  2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成"等腰三角形的三线合一")。

  3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

  4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

  5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

  6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

  7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

  (2)判定

  在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。

  在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

  三、直角三角形和勾股定理

  有一个角是直角的三角形是直角三角形,在直角三角形中,斜边中线等于斜边的一半;30度所对的直角边等于斜边的一半;直角三角形常用面积法求斜边上的高。

  勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

  勾股数一定是正整数,常见勾股数:3,4,5;5,12,13;6,8,10,;7,24,25;8,15,17;9,12,15。

  方法总结:

  当不明确直角三角形的斜边长,应把已知最长边分为直角边和斜边两种情况讨论。无理数在数轴上的表示和线段长表示通常用到勾股定理。翻折题型常用勾股定理(口诀:翻折求边找直角,勾股定理设未知量)

  如果三角形的三边长a,b,c有关系a2+b2=c2,那么这个三角形是直角三角形。勾股定理的`逆定理,常用于判断三角形的形状,先确定最大边(可以设为c)。

  四、初中三角形中线定理

  中线定理又称阿波罗尼奥斯定理,是欧氏几何的定理,表述三角形三边和中线长度关系。

  定理内容:三角形一条中线两侧所对边平方和等于底边的一半平方与该边中线平方和的2倍。

  中线的定义:任何三角形都有三条中线,而且这三条中线都在三角形的内部,并交于一点。

  由定义可知,三角形的中线是一条线段。

  由于三角形有三条边,所以一个三角形有三条中线。

  且三条中线交于一点。这点称为三角形的重心。

  每条三角形中线分得的两个三角形面积相等。

  五、直角三角形的判定

  判定1:有一个角为90°的三角形是直角三角形。

  判定2:若a的平方+b的平方=c的平方,则以a、b、c为边的三角形是以c为斜边的直角三角形(勾股定理的逆定理)。

  判定3:若一个三角形30°内角所对的边是某一边的一半,那么这个三角形是以这条长边为斜边的直角三角形。

  判定4:两个锐角互余的三角形是直角三角形。

  判定5:证明直角三角形全等时可以利用HL,两个三角形的斜边长对应相等,以及一个直角边对应相等,则两直角三角形全等。[定理:斜边和一条直角对应相等的两个直角三角形全等。简称为HL]

  判定6:若两直线相交且它们的斜率之积互为负倒数,则这两直线垂直。

  判定7:在一个三角形中若它一边上的中线等于这条中线所在边的一半,那么这个三角形为直角三角形。

  六、勾股定理的逆定理

  如果三角形三边长a,b,c满足,那么这个三角形是直角三角形,其中c为斜边。

  ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若时,以a,b,c为三边的三角形是钝角三角形;若时,以a,b,c为三边的三角形是锐角三角形;

  ②定理中a,b,c及只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边

  ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形。

  七、三角形定理公式

  三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边。

  三角形的内角和定理:三角形的三个内角的和等于180度。

  三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和。

  三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角。

  三角形的三条角平分线交于一点(内心)。

  三角形的三边的垂直平分线交于一点(外心)。

  三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半。

【七年级上册数学角的和与差的知识点】相关文章:

七年级上册数学:角的种类知识点复习04-20

和差化积公式推导初三上册数学复习知识点08-16

七年级上册数学角的种类知识点复习归纳12-06

七年级上册数学角的种类期末知识点复习04-20

数学知识点:旋转与角04-23

初一上册数学知识点总结:角的种类12-22

五年级数学上册角知识点02-22

七年级数学相关的角与性质的知识点07-12

四年级上册数学线与角知识点08-15

数学七年级上册基本知识点09-25