数学 百文网手机站

八年级数学上册期中复习知识点

时间:2022-11-14 15:02:39 数学 我要投稿

八年级数学上册期中复习知识点

  在现实学习生活中,大家都没少背知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。为了帮助大家更高效的学习,下面是小编整理的八年级数学上册期中复习知识点,希望能够帮助到大家。

八年级数学上册期中复习知识点

  平行四边形的定义:两线对边分别平行的四边形叫做平行四边形,平行四边形不相邻的两顶点连成的线段叫做它的对角线。

  平行四边形的性质:平行四边形的对边相等,对角相等,对角线互相平分。

  平行四边形的判别方法:两组对边分别平行的四边形是平行四边形。

  两组对边分别相等的四边形是平行四边形。

  一组对边平行且相等的四边形是平行四边形。

  两条对角线互相平分的四边形是平行四边形。

  平行线之间的距离:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等。这个距离称为平行线之间的距离。

  菱形的定义:一组邻边相等的平行四边形叫做菱形。

  菱形的性质:具有平行四边形的性质,且四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。

  菱形是轴对称图形,每条对角线所在的直线都是对称轴。

  菱形的判别方法:一组邻边相等的平行四边形是菱形。

  对角线互相垂直的平行四边形是菱形。

  四条边都相等的四边形是菱形。

  矩形的定义:有一个角是直角的平行四边形叫矩形。矩形是特殊的平行四边形。

  矩形的性质:具有平行四边形的性质,且对角线相等,四个角都是直角。(矩形是轴对称图形,有两条对称轴)

  矩形的判定:有一个内角是直角的平行四边形叫矩形(根据定义)。

  对角线相等的平行四边形是矩形。

  四个角都相等的四边形是矩形。

  推论:直角三角形斜边上的中线等于斜边的一半。

  正方形的定义:一组邻边相等的矩形叫做正方形。

  正方形的性质:正方形具有平行四边形、矩形、菱形的一切性质。(正方形是轴对称图形,有两条对称轴)

  正方形常用的判定:

  有一个内角是直角的菱形是正方形;

  邻边相等的'矩形是正方形;

  对角线相等的菱形是正方形;

  对角线互相垂直的矩形是正方形。

  正方形、矩形、菱形和平行边形四者之间的关系(如图3所示):

  梯形定义:一组对边平行且另一组对边不平行的四边形叫做梯形。

  两条腰相等的梯形叫做等腰梯形。

  一条腰和底垂直的梯形叫做直角梯形。

  等腰梯形的性质:等腰梯形同一底上的两个内角相等,对角线相等。

  同一底上的两个内角相等的梯形是等腰梯形。

  多边形内角和:n边形的内角和等于(n-2)180°

  多边形的外角和都等于360°

  在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图开叫做中心对称图形。

  中心对称图形上的每一对对应点所连成的线段被对称中心平分。

  扩展资料:

  (1)因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。

  (2)公因式:一个多项式每一项都含有的相同的因式叫做这个多项式的公因式。

  (3)确定公因式的方法:公因数的系数应取各项系数的最大公约数;字母取各项的相同字母,而且各字母的指数取次数最低的。

  (4)提公因式法:一般地,如果多项式的各项有公因式可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。

  (5)提出多项式的公因式以后,另一个因式的确定方法是:用原来的多项式除以公因式所得的商就是另一个因式。

  (6)如果多项式的第一项的系数是负的,一般要提出“—”号,使括号内的第一项的系数是正的,在提出“—”号时,多项式的各项都要变号。

  (7)因式分解和整式乘法的关系:因式分解和整式乘法是整式恒等变形的正、逆过程,整式乘法的结果是整式,因式分解的结果是乘积式。

  (8)运用公式法:如果把乘法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法。

  (9)平方差公式:两数平方差,等于这两数的和乘以这两数的差,字母表达式:a2—b2=(a+b)(a—b)

  (10)具备什么特征的两项式能用平方差公式分解因式

  ①系数能平方,(指的系数是完全平方数)

  ②字母指数要成双,(指的指数是偶数)

  ③两项符号相反。(指的两项一正号一负号)

  (11)用平方差公式分解因式的关键:把每一项写成平方的形式,并能正确地判断出a,b分别等于什么。

  (l2)完全平方公式:两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。字母表达式:a2±2ab+b2=(a±b)2

  (13)完全平方公式的特点:

  ①它是一个三项式。

  ②其中有两项是某两数的平方和。

  ③第三项是这两数积的正二倍或负二倍。

  ④具备以上三方面的特点以后,就等于这两数和(或者差)的平方。

  (14)立方和与立方差公式:两个数的立方和(或者差)等于这两个数的和(或者差)乘以它们的平方和与它们积的差(或者和)。

【八年级数学上册期中复习知识点】相关文章:

初二数学上册期中复习知识点07-21

八年级上册数学期中复习知识点07-26

初二数学上册期中复习知识点归纳01-19

八年级上册语文期中复习知识点11-08

八年级上册生物期中复习知识点11-07

八年级语文(上册)期中复习知识点07-03

八年级上册历史期中复习知识点07-09

八年级上册数学《因式分解》期中复习知识点07-26

八年级上册生物期中复习知识点归纳02-16