八年级上册数学第五单元知识点详解
在日复一日的学习中,不管我们学什么,都需要掌握一些知识点,知识点就是一些常考的内容,或者考试经常出题的地方。为了帮助大家掌握重要知识点,下面是小编整理的八年级上册数学第五单元知识点详解,仅供参考,希望能够帮助到大家。
八年级上册数学第五单元知识点详解 篇1
一、勾股定理
1、勾股定理
直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。
2、勾股定理的逆定理
如果三角形的三边长a,b,c有这种关系,那么这个三角形是直角三角形。
3、勾股数
满足的三个正整数,称为勾股数。
常见的勾股数组有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(这些勾股数组的倍数仍是勾股数)。
二、证明
1、对事情作出判断的句子,就叫做命题。即:命题是判断一件事情的句子。
2、三角形内角和定理:三角形三个内角的和等于180度。
(1)证明三角形内角和定理的思路是将原三角形中的三个角凑到一起组成一个平角。一般需要作辅助。
(2)三角形的外角与它相邻的内角是互为补角。
3、三角形的外角与它不相邻的内角关系
(1)三角形的一个外角等于和它不相邻的两个内角的和。
(2)三角形的一个外角大于任何一个和它不相邻的内角。
4、证明一个命题是真命题的基本步骤
(1)根据题意,画出图形。
(2)根据条件、结论,结合图形,写出已知、求证。
(3)经过分析,找出由已知推出求证的途径,写出证明过程。在证明时需注意:①在一般情况下,分析的过程不要求写出来。②证明中的每一步推理都要有根据。如果两条直线都和第三条直线平行,那么这两条直线也相互平行。
三、数据的分析
1、平均数
①一般地,对于n个数x1x2、、、xn,我们把(x1+x2+???+xn)叫做这n个数的算数平均数,简称平均数记为。
②在实际问题中,一组数据里的各个数据的“重要程度”未必相同,因而在计算,这组数据的平均数时,往往给每个数据一个权,叫做加权平均数。
2、中位数与众数
①中位数:一般地,n个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
②一组数据中出现次数最多的那个数据叫做这组数据的众数。
③平均数、中位数和众数都是描述数据集中趋势的统计量。
④计算平均数时,所有数据都参加运算,它能充分地利用数据所提供的信息,因此在现实生活中较为常用,但他容易受极端值影响。
⑤中位数的优点是计算简单,受极端值影响较小,但不能充分利用所有数据的信息。
⑥各个数据重复次数大致相等时,众数往往没有特别意义。
3、从统计图分析数据的集中趋势
4、数据的离散程度
①实际生活中,除了关心数据的集中趋势外,人们还关注数据的离散程度,即它们相对于集中趋势的偏离情况。一组数据中数据与最小数据的差,(称为极差),就是刻画数据离散程度的一个统计量。
②数学上,数据的离散程度还可以用方差或标准差刻画。
③方差是各个数据与平均数差的平方的平均数。
④其中是x1,x2、、、、、xn平均数,s2是方差,而标准差就是方差的算术平方根。
⑤一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定。
三角形知识概念
1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
13、公式与性质:
(1)三角形的内角和:三角形的内角和为180°
(2)三角形外角的性质:
性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
(3)多边形内角和公式:边形的内角和等于?180°
(4)多边形的外角和:多边形的外角和为360°
(5)多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。②边形共有条对角线。
位置与坐标
1、确定位置
在平面内,确定一个物体的位置一般需要两个数据。
2、平面直角坐标系
①含义:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
②通常地,两条数轴分别置于水平位置与竖直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做x轴或者横轴,竖直的数轴叫y轴和纵轴,二者统称为坐标轴,它们的公共原点o被称为直角坐标系的原点。
③建立了平面直角坐标系,平面内的点就可以用一组有序实数对来表示。
④在平面直角坐标系中,两条坐标轴将坐标平面分成了四部分,右上方的部分叫第一象限,其他三部分按逆时针方向叫做第二象限,第三象限,第四象限,坐标轴上的点不在任何一个象限。
⑤在直角坐标系中,对于平面上任意一点,都有的一个有序实数对(即点的坐标)与它对应;反过来,对于任意一个有序实数对,都有平面上的一点与它对应。
3、轴对称与坐标变化
关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
解一元一次方程
1、等式与等量:用"="号连接而成的式子叫等式、注意:"等量就能代入"!
2、等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式、
3、方程:含未知数的等式,叫方程、
4、方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:"方程的解就能代入"!
5、移项:改变符号后,把方程的项从一边移到另一边叫移项、移项的依据是等式性质1、
6、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程、
7、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)、
8、一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0)、
9、一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解)、
10、列一元一次方程解应用题:
(1)读题分析法:…………多用于"和,差,倍,分问题"
仔细读题,找出表示相等关系的关键字,例如:"大,小,多,少,是,共,合,为,完成,增加,减少,配套-----",利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程、
(2)画图分析法:…………多用于"行程问题"
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
统计的初步认识
1、折线统计图的特点:能获取数据变化情况的信息,并进行简单的预测。
2、折线统计图的方法:在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。
3、能够看出折线统计图所提供的信息,并回答相关的问题。
补充内容:
1、条形统计图与折线统计图的不同:条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。
2、初步了解复式折线统计图,能够从中获得相应的信息,回答提出的问题。
课后练习
1、统计学的基本涵义是(D)。
A、统计资料
B、统计数字
C、统计活动
D、是一门处理数据的方法和技术的科学,也可以说统计学是一门研究“数据”的科学,任务是如何有效地收集、整理和分析这些数据,探索数据内在的数量规律性,对所观察的现象做出推断或预测,直到为采取决策提供依据。
2、要了解某一地区国有工业企业的生产经营情况,则统计总体是(B)。
A、每一个国有工业企业
B、该地区的所有国有工业企业
C、该地区的所有国有工业企业的生产经营情况
D、每一个企业
3、要了解20个学生的学习情况,则总体单位是(C)。
A、20个学生
B、20个学生的学习情况
C、每一个学生
D、每一个学生的学习情况
4、下列各项中属于数量标志的是(B)。
A、性别
B、年龄
C、职称
D、健康状况
5、总体和总体单位不是固定不变的,由于研究目的改变(A)。
A、总体单位有可能变换为总体,总体也有可能变换为总体单位
B、总体只能变换为总体单位,总体单位不能变换为总体
C、总体单位不能变换为总体,总体也不能变换为总体单位
D、任何一对总体和总体单位都可以互相变换
6、以下岗职工为总体,观察下岗职工的性别构成,此时的标志是(C)。
A、男性职工人数
B、女性职工人数
C、下岗职工的性别
D、性别构成
抽样调查
(1)调查样本是按随机的原则抽取的,在总体中每一个单位被抽取的机会是均等的,因此,能够保证被抽中的单位在总体中的均匀分布,不致出现倾向性误差,代表性强。
(2)是以抽取的全部样本单位作为一个“代表团”,用整个“代表团”来代表总体。而不是用随意挑选的个别单位代表总体。
(3)所抽选的调查样本数量,是根据调查误差的要求,经过科学的计算确定的,在调查样本的数量上有可靠的保证。
(4)抽样调查的误差,是在调查前就可以根据调查样本数量和总体中各单位之间的差异程度进行计算,并控制在允许范围以内,调查结果的准确程度较高。
课后练习
1、抽样成数是一个(A)
A、结构相对数B、比例相对数C、比较相对数D、强度相对数
2、成数和成数方差的关系是(C)
A、成数越接近于0,成数方差越大B、成数越接近于1,成数方差越大
C、成数越接近于0、5,成数方差越大D、成数越接近于0、25,成数方差越大
3、整群抽样是对被抽中的群作全面调查,所以整群抽样是(B)
A、全面调查B、非全面调查C、一次性调查D、经常性调查
4、对400名大学生抽取19%进行不重复抽样调查,其中优等生比重为20%,概率保证程度为95、45%,则优等生比重的极限抽样误差为(A)
A、40%B、4、13%C、9、18%D、8、26%
5、根据5%抽样资料表明,甲产品合格率为60%,乙产品合格率为80%,在抽样产品数相等的条件下,合格率的抽样误差是(B)
A、甲产品大B、乙产品大C、相等D、无法判断
数学学习方法
注意习惯的养成
比如遇到问题基本上不思考就直接寻求帮助、做题时总是心不在焉抠手玩笔、每次检查作业的任务都交给家长完成,这些习惯不仅不容易改正,往往还容易由于家长的原因而愈发严重。对于一个初中生来说,遇到数学问题独立思考、学习时拥有一定的自律能力、能够检查自己犯下的错误这些能力是重要而且必须的,这不仅需要孩子的努力,更需要家长的配合和支持。
高效听课
1、有准备的去听,也就是说听课前要先预习,找出不懂的知识、发现问题,带着知识点和问题去听数学课会有解惑的快乐,也更听得进去,容易掌握;
2、参与交流和互动,不要只是把自己摆在“听”的旁观者,而是“听”的参与者,积极思考老师讲的或提出的问题,能回答的时候积极回答(回答数学问题的好处不仅仅是表现,更多的是可以让你注意力更集中)。
3、听要结合写和思考。纯粹的听很容易懈怠,能记住的点也很少,所以一定要学会快速的整理记忆。
多项式定义
在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。
对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。
八年级上册数学第五单元知识点详解 篇2
1.旋转和平移
平移和旋转是几何中全等变换的一种重要的方式,其中旋转是对大家几何变化能力进行考察的常用手段。
旋转问题之所以难,就是因为他通过旋转使得图形中出现很多相等的边和相等的角,但是这不是图中直接告诉的,是需要大家自己发现的,而旋转与后面的二次函数、反比例函数、四边形等知识结合在一起,会使的题目灵活性非常强,所以这一块在学基础知识的时候一定要牢固把握。
2.平行四边形
平行四边形,是学习矩形、菱形、正方形的基础,他的判定方式有五种,在实际应用的时候,同学们往往难以决定到底要采取哪种方式,这就需要同学们根据图形灵活的选择,不同的办法进行解决。
3.特殊平行四边形行
特殊平行四边形是初三的内容,但是很多地方都把它提到初二来讲。这部分知识灵活性强,变化大,综合难度高,往往是同学们觉得几何难学的开端。解决的办法就是把他们的性质和判定列表写出来,由于表述非常的类似和接近,记忆起来比较困难。这就需要同学们运用对比分析的方法,搞清楚这三种图形各自的性质和判定,这样才能在应用的时候不至于混淆。
整式
1.整式:整式为单项式和多项式的统称,是有理式的一部分,在有理式中可以包含加,减,乘,除、乘方五种运算,但在整式中除数不能含有字母。
2.乘法
(1)同底数幂相乘,底数不变,指数相加。
(2)幂的乘方,底数不变,指数相乘。
(3)积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘。
3.整式的除法
(1)同底数幂相除,底数不变,指数相减。
(2)任何不等于零的数的零次幂为1。
分式
1.一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A/B就叫做分式,其中A称为分子,B称为分母。
2.分式条件
(1)分式有意义条件:分母不为0。
(2)分式值为0条件:分子为0且分母不为0。
(3)分式值为正(负)数条件:分子分母同号得正,异号得负。
(4)分式值为1的条件:分子=分母≠0。
(5)分式值为-1的条件:分子分母互为相反数,且都不为0。
二次根式
1.一般地,形如√a的代数式叫做二次根式,其中,a叫做被开方数。当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数。
2.二次根式的加减法
(1)同类二次根式:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
(2)合并同类二次根式:把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。
(3)二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
3.二次根式的乘除法
二次根式相乘除,把被开方数相乘除,根指数不变,再把结果化为最简二次根式。
八年级上册数学第五单元知识点详解 篇3
1、变量与常量
在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。
一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。
2、函数解析式
用来表示函数关系的数学式子叫做函数解析式或函数关系式。
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。
3、函数的三种表示法及其优缺点
(1)解析法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图像法
用图像表示函数关系的方法叫做图像法。
4、由函数解析式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
初中怎样学好数学
学好初中数学培养运算能力
初中数学涉及到大量的运算内容,比如有理数的运算、因式分解、根式的运算和解方程,这些都是初中数学涉及到的知识内容,如果初中生数学运算能力不过关,那么成绩怎么能提高呢?所以运算是学好初中数学的基本功,这个基本功一定要扎实,不然以后的初中数学就可以不用学习了。
初中生在解答运算题的时候,不要急躁,静下心来。初中数学运算的过程是很重要的,这也是初中生对于数学逻辑和思维的培养过程,结果要准确;同时初中生还有要绝对的自信,不要求速度可以慢一点的,尽量一次做对。
学好初中数学做题的数量不能少
不可否认,想要学好初中数学,就要做一定量的数学题。不赞同大量的刷题,那样没有什么意义。初中生做数学题主要是以基础题的练习为主,将初中数学的基础题弄懂的同时,反复的做一些比较典型的题,这样才是初中生正确的学习数学方式。
在初中阶段,学生要锻炼自己数学的抽象思维能力,最好的结果是在不用书写的情况下,就能够得到正确的答案,这也就是我们常说的熟能生巧。同时也是初中生数学基础知识牢固的体现。相反的,有的初中生在做练习题的.时候,比较盲目和急躁,这样的结果就是粗心大意,马虎出错。
课上重视听讲课下及时复习
初中生数学能力的培养一部分在于平时做题的过程中,另一部分就在课堂上。所以初中生想要学好数学,就要重视课内的学习效率,在课上的时候要跟紧老师的思路,大胆的推测老师下一步讲课的知识,尤其是基础知识的学习。在课后初中生还要对学习的数学知识点及时复习。对于每个阶段初中数学的学习要进行知识点归纳和整理。
初中数学多项式知识点
1、几个单项式的和叫做多项式。
2、多项式中的每一个单项式叫做多项式的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号。
6、多项式没有系数的概念,但有次数的概念。
7、多项式中次数的项的次数,叫做这个多项式的次数。
八年级上册数学第五单元知识点详解 篇4
《反比例函数》知识点整理
1、定义:形如y=(k为常数,k≠0)的函数称为反比例函数。
2、其他形式xy=k(k为常数,k≠0)都是。
3、图像:反比例函数的图像属于双曲线。
反比例函数的图象既是轴对称图形又是中心对称图形。
有两条对称轴:直线y=x和y=—x。对称中心是:原点。
4、性质:当k>0时双曲线的两支分别位于第一、第三象限,在每个象限内y值随x值的增大而减小。
当k<0时双曲线的两支分别位于第二、第四象限,在每个象限内y值随x值的增大而增大。
5、|k|的几何意义:表示反比例函数图像上的点向两坐标轴
所作的垂线段与两坐标轴围成的矩形的面积。
勾股定理
1、勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2。
2、勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2。,那么这个三角形是直角三角形。
3、经过证明被确认正确的命题叫做定理。
我们把题设、结论正好相反的两个命题叫做互逆命题。如果把其中一个叫做原命题,那么另一个叫做它的逆命题。(例:勾股定理与勾股定理逆定理)
四边形
平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;
平行四边形的对角相等。
平行四边形的对角线互相平分。
平行四边形的判定
1、两组对边分别相等的四边形是平行四边形
2、对角线互相平分的四边形是平行四边形;
3、两组对角分别相等的四边形是平行四边形;
4、一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的定义:有一个角是直角的平行四边形。
矩形的性质:矩形的四个角都是直角;
矩形的对角线平分且相等。AC=BD
矩形判定定理:
1、有一个角是直角的平行四边形叫做矩形。
2、对角线相等的平行四边形是矩形。
3、有三个角是直角的四边形是矩形。
菱形的定义:邻边相等的平行四边形。
菱形的性质:菱形的四条边都相等;
菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
菱形的判定定理:
1、一组邻边相等的平行四边形是菱形。
2、对角线互相垂直的平行四边形是菱形。
3、四条边相等的四边形是菱形。
S菱形=1/2×ab(a、b为两条对角线)
正方形定义:一个角是直角的菱形或邻边相等的矩形。
正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。
正方形判定定理:1、邻边相等的矩形是正方形。 2、有一个角是直角的菱形是正方形。
梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。
直角梯形的定义:有一个角是直角的梯形
等腰梯形的定义:两腰相等的梯形。
等腰梯形的性质:等腰梯形同一底边上的两个角相等;
等腰梯形的两条对角线相等。
等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。
解梯形问题常用的辅助线:如图
线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是(约为0.618)的矩形叫做黄金矩形。
数据的分析
1、算术平均数:
2、加权平均数:加权平均数的计算公式。
权的理解:反映了某个数据在整个数据中的重要程度。
而是以比的或百分比的形式出现及频数分布表求加权平均数的方法。
3、将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数(median);如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数。
4、一组数据中出现次数最多的数据就是这组数据的众数(mode)。
5、一组数据中的最大数据与最小数据的差叫做这组数据的极差(range)。
6、方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳定。
数据的收集与整理的步骤:1、收集数据2、整理数据3、描述数据4、分析数据5、撰写调查报告6、交流
7、平均数受极端值的影响众数不受极端值的影响,这是一个优势,中位数的计算很少不受极端值的影响。
数学学习中常见问题分析
大部分初二学生在学习中或多或少的都会积累一些问题,这些问题平时我们可能不是很在意,那么到了初二后就会突显出来。首先初二新生在学习数学的时候常遇到的就是对于知识点的理解不到位,还停留在一知半解的层次上面。有的初二学生在解答数学题的时候始终不能把握解题技巧,也就是说初二学生缺乏对待数学的举一反三能力。
还有的初二学生在解答数学题时效率太低,无法再规定的时间内完成解题,对于初中的考试节奏还没办法适应。一些初二学生还没有养成一个总结归纳的习惯,不会归纳知识点,不会归纳错题。这些都是导致初二学生学不好数学的原因。
数学学习技巧
1、做好预习:
单元预习时粗读,了解近阶段的学习内容,课时预习时细读,注重知识的形成过程,对难以理解的概念、公式和法则等要做好记录,以便带着问题听课。
2、认真听课:
听课应包括听、思、记三个方面。听,听知识形成的来龙去脉,听重点和难点,听例题的解法和要求。思,一是要善于联想、类比和归纳,二是要敢于质疑,提出问题。记,指课堂笔记——记方法,记疑点,记要求,记注意点。
3、认真解题:
课堂练习是最及时最直接的反馈,一定不能错过。不要急于完成作业,要先看看你的笔记本,回顾学习内容,加深理解,强化记忆。
4、及时纠错:
课堂练习、作业、检测,反馈后要及时查阅,分析错题的原因,必要时强化相关计算的训练。不明白的问题要及时向同学和老师请教了,不能将问题处于悬而未解的状态,养成今日事今日毕的好习惯。
【八年级上册数学第五单元知识点详解】相关文章:
八年级上册数学第五单元知识点01-21
第五单元数学广角知识点06-21
八年级上册语文第五单元知识点07-05
初一上册数学第五单元知识点整理06-28
初二上册数学第五单元知识点归纳01-20
数学第五单元知识点:观察物体07-27
初二语文上册第五单元知识点07-05
八年级语文上册第五单元知识点总结06-29
知识点总结:八年级上册语文第五单元精选06-29