数学四边形的知识点

时间:2023-07-20 13:00:19 宜欢 数学 我要投稿

数学四边形的知识点(精选10篇)

  在我们上学期间,看到知识点,都是先收藏再说吧!知识点有时候特指教科书上或考试的知识。为了帮助大家掌握重要知识点,下面是小编收集整理的数学四边形的知识点(精选10篇),欢迎大家分享。

数学四边形的知识点(精选10篇)

  数学四边形的知识点 1

  1、平行四边形

  性质:对边相等;对角相等;对角线互相平分。

  判定:两组对边分别相等的四边形是平行四边形;

  两组对角分别相等的四边形是平行四边形;

  对角线互相平分的四边形是平行四边形;

  一组对边平行而且相等的四边形是平行四边形。

  推论:三角形的中位线平行第三边,并且等于第三边的一半。

  2、特殊的平行四边形:矩形、菱形、正方形

  (1)矩形

  性质:矩形的四个角都是直角;

  矩形的对角线相等;

  矩形具有平行四边形的所有性质

  判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;

  推论:直角三角形斜边的`中线等于斜边的一半。

  (2)菱形性质:菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形具有平行四边形的一切性质

  判定:有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形。

  (3)正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有性质。

  3梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;同一个底上的两个角相等的梯形是等腰梯形。

  数学四边形的知识点 2

  1、四边形的内角和定理:四边形内角和等于360°;

  2、多边形内角和定理:n边形的内角和等于(n-2)×180°;

  3、多边形的外角和定理:任意多边形的外角和等于360°;

  4、n边形对角线条数公式:n(n-3)2(n≥3);

  5、中心对称:把一个图形绕某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称。

  6、中心对称图形:把一个图形绕某一个点旋转180°,如果它能够和原来的图形互相重合,那么就说这个图形叫做中心对称图形。

  7、中心对称的性质:关于中心对称的.两个图形是全等形;关于中心对称的两个图形,对称点的连线都经过对称中心,并且被对称中心平分。

  8、平行四边形的性质和判定

  数学四边形的知识点 3

  知识点总结

  1.定义:两组对边分别平行的四边形叫平行四边形

  2.平行四边形的性质

  (1)平行四边形的对边平行且相等;

  (2)平行四边形的邻角互补,对角相等;

  (3)平行四边形的对角线互相平分;

  3.平行四边形的判定

  平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:

  第一类:与四边形的对边有关

  (1)两组对边分别平行的四边形是平行四边形;

  (2)两组对边分别相等的四边形是平行四边形;

  (3)一组对边平行且相等的`四边形是平行四边形;

  第二类:与四边形的对角有关

  (4)两组对角分别相等的四边形是平行四边形;

  第三类:与四边形的对角线有关

  (5)对角线互相平分的四边形是平行四边形

  常见考法

  (1)利用平行四边形的性质,求角度、线段长、周长;

  (2)求平行四边形某边的取值范围;

  (3)考查一些综合计算问题;

  (4)利用平行四边形性质证明角相等、线段相等和直线平行;

  (5)利用判定定理证明四边形是平行四边形。

  误区提醒

  (1)平行四边形的性质较多,易把对角线互相平分,错记成对角线相等;

  (2)“一组对边平行且相等的四边形是平行四边形”错记成“一组对边平行,一组对边相等的四边形是平行四边形”后者不是平行四边形的判定定理,它只是个等腰梯形。

  数学四边形的知识点 4

  1、两组对边平行的四边形是平行四边形、

  2、性质:

  (1)平行四边形的对边相等且平行;

  (2)平行四边形的对角相等,邻角互补;

  (3)平行四边形的对角线互相平分、

  3、判定:

  (1)两组对边分别平行的四边形是平行四边形:

  (2)两组对边分别相等的四边形是平行四边形;

  (3)一组对边平行且相等的四边形是平行四边形;

  (4)两组对角分别相等的四边形是平行四边形:

  (5)对角线互相平分的四边形是平行四边形、

  4、对称性:平行四边形是中心对称图形、

  5、平行四边形中常用辅助线的添法

  (1)、连对角线或平移对角线

  (2)、过顶点作对边的.垂线构造直角三角形

  (3)、连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线

  (4)、连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

  (5)、过顶点作对角线的垂线,构成线段平行或三角形全等。

  数学四边形的知识点 5

  1、平行四边形

  性质:对边相等;对角相等;对角线互相平分。

  判定:两组对边分别相等的四边形是平行四边形;

  两组对角分别相等的四边形是平行四边形;

  对角线互相平分的四边形是平行四边形;

  一组对边平行而且相等的四边形是平行四边形。

  推论:三角形的中位线平行第三边,并且等于第三边的一半。

  2、特殊的'平行四边形:矩形、菱形、正方形

  (1) 矩形

  性质:矩形的四个角都是直角;

  矩形的对角线相等;

  矩形具有平行四边形的所有性质

  判定: 有一个角是直角的平行四边形是矩形; 对角线相等的平行四边形是矩形;

  推论: 直角三角形斜边的中线等于斜边的一半。

  (2) 菱形 性质:菱形的四条边都相等; 菱形的对角线互相垂直,并且每一条对角线平分一组对角; 菱形具有平行四边形的一切性质

  判定:有一组邻边相等的平行四边形是菱形; 对角线互相垂直的平行四边形是菱形; 四边相等的四边形是菱形。

  (3) 正方形:既是一种特殊的矩形,又是一种特殊的菱形,所以它具有矩形和菱形的所有 性质。

  3、梯形:直角梯形和等腰梯形

  等腰梯形:等腰梯形同一底边上的两个角相等; 等腰梯形的两条对角线相等; 同一个底上的两个角相等的梯形是等腰梯形。

  数学四边形的知识点 6

  一、特殊的平行四边形:

  1.矩形:

  (1)定义:有一个角是直角的平行四边形。

  (2)性质:矩形的四个角都是直角;矩形的对角线平分且相等。

  (3)判定定理:

  ①有一个角是直角的平行四边形叫做矩形。

  ②对角线相等的平行四边形是矩形。

  ③有三个角是直角的四边形是矩形。

  直角三角形的性质:直角三角形中所对的直角边等于斜边的一半。

  2.菱形:

  (1)定义:邻边相等的平行四边形。

  (2)性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  (3)判定定理:

  ①一组邻边相等的平行四边形是菱形。

  ②对角线互相垂直的平行四边形是菱形。

  ③四条边相等的四边形是菱形。

  (4)面积:

  3.正方形:

  (1)定义:一个角是直角的菱形或邻边相等的矩形。

  (2)性质:四条边都相等,四个角都是直角,对角线互相垂直平分。正方形既是矩形,又是菱形。

  (3)正方形判定定理:

  ①对角线互相垂直平分且相等的四边形是正方形;

  ②一组邻边相等,一个角为直角的平行四边形是正方形;

  ③对角线互相垂直的矩形是正方形;

  ④邻边相等的矩形是正方形

  ⑤有一个角是直角的菱形是正方形;

  ⑥对角线相等的菱形是正方形。

  二、矩形、菱形、正方形与平行四边形、四边形之间的联系:

  1.矩形、菱形和正方形都是特殊的平行四边形,其性质都是在平行四边形的基础上扩充来的。矩形是由平行四边形增加“一个角为90°”的条件得到的',它在角和对角线方面具有比平行四边形更多的特性;菱形是由平行四边形增加“一组邻边相等”的条件得到的,它在边和对角线方面具有比平行四边形更多的特性;正方形是由平行四边形增加“一组邻边相等”和“一个角为90°”两个条件得到的,它在边、角和对角线方面都具有比平行四边形更多的特性。

  2.矩形、菱形的判定可以根据出发点不同而分成两类:一类是以四边形为出发点进行判定,另一类是以平行四边形为出发点进行判定。而正方形除了上述两个出发点外,还可以从矩形和菱形出发进行判定。

  三、判定一个四边形是特殊四边形的步骤:

  常见考法

  (1)利用菱形、矩形、正方形的性质进行边、角以及面积等计算;

  (2)灵活运用判定定理证明一个四边形(或平行四边形)是菱形、矩形、正方形;

  (3)一些折叠问题;

  (4)矩形与直角三角形和等腰三角形有着密切联系、正方形与等腰直角三角形也有着密切联系。所以,以此为背景可以设置许多考题。

  误区提醒

  (1)平行四边形的所有性质矩形、菱形、正方形都具有,但矩形、菱形、正方形具有的性质平行四边形不一定具有,这点易出现混淆;

  (2)矩形、菱形具有的性质正方形都具有,而正方形具有的性质,矩形不一定具有,菱形也不一定具有,这点也易出现混淆;

  (3)不能正确的理解和运用判定定理进行证明,(如在证明菱形时,把四条边相等的四边形是菱形误解成两组邻边相等的四边形是菱形);

  (4)再利用对角线长度求菱形的面积时,忘记乘;

  (5)判定一个四边形是特殊的平行四边形的条件不充分。

  数学四边形的知识点 7

  1、四边形的内角和定理:四边形内角和等于360°;

  2、多边形内角和定理:n边形的内角和等于(n-2)×180°;

  3、多边形的外角和定理:任意多边形的外角和等于360°;

  4、n边形对角线条数公式:n(n-3)2(n≥3);

  5、中心对称:把一个图形绕某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称。

  6、中心对称图形:把一个图形绕某一个点旋转180°,如果它能够和原来的图形互相重合,那么就说这个图形叫做中心对称图形。

  7、中心对称的性质:关于中心对称的两个图形是全等形;关于中心对称的两个图形,对称点的`连线都经过对称中心,并且被对称中心平分。

  8、平行四边形的性质和判定

  数学四边形的知识点 8

  长方形与正方形

  知识点:

  1、掌握长方形正方形的特征:长方形和正方形都有4条边,4个直角,长方形对边相等,正方形四条边都相等。

  2、初步了解长方形、正方形之间的联系:正方形是特殊的.长方形。

  3、能在方格纸上画出长方形与正方形。

  平行四边形

  知识点:

  1、直观认识平行四边形,知道平行四边形有四条边、四个角,对边相等。

  2、初步了解长方形是特殊的平行四边形。

  数学四边形的知识点 9

  1.定义:两组对边分别平行的四边形叫平行四边形

  2.平行四边形的性质

  (1)平行四边形的对边平行且相等;

  (2)平行四边形的邻角互补,对角相等;

  (3)平行四边形的对角线互相平分;

  3.平行四边形的判定

  平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的'五种判定方法,进行划分:

  第一类:与四边形的对边有关

  (1)两组对边分别平行的四边形是平行四边形;

  (2)两组对边分别相等的四边形是平行四边形;

  (3)一组对边平行且相等的四边形是平行四边形;

  第二类:与四边形的对角有关

  (4)两组对角分别相等的四边形是平行四边形;

  第三类:与四边形的对角线有关

  (5)对角线互相平分的四边形是平行四边形

  数学四边形的知识点 10

  在这一章节的四边形知识学习中,我们会遇到平行四边形、菱形、矩形、正方形以及梯形。

  四边形的性质探索

  1、平行四边形的性质

  ⑴两组对边分别平行的四边形叫平行四边形。

  ⑵平行四边形的性质:

  平行四边形对边相等、对角相等、对角线互相平分

  ⑶平行线之间的距离(平行线之间的垂线段处处相等)

  2、平行四边形的判别

  两条对角线互相平分的四边形(定义)

  一组对边平行且相等的四边形

  两组对边分别相等的四边形

  两组对边分别平行的四边形

  3、菱形

  ⑴性质:四条边都相等、两条对角线互相垂直平分、每条对角线平分一组对角

  ⑵判定:

  一组邻边相等的平行四边形(定义)

  对角线相互垂直的.四边形

  四条边都相等的四边形

  4、矩形、正方形

  ⑴矩形的性质:对角线相等、四个角都是直角

  ⑵判定:

  有一个角是直角的平行四边形(定义)

  对角线相等的平行四边形

  ⑶正方形的定义:一组邻边相等的矩形叫正方形

  ⑷正方形的性质:

  正方形具有平行四边形、菱形、矩形的一切性质

  5、梯形

  ⑴梯形:一组对边平行而另一组对边不平行的四边形叫梯形(底、腰、高)

  ⑵等腰梯形:两腰相等的梯形

  等腰梯形同一底上的两个内角相等,对角线相等

  同一底上两个内角相等的梯形是等腰梯形

  ⑶直角梯形:一腰和底垂直的梯形

  6、探索多边形的内角与外角和

  ⑴n边形的内角和等于(n—2)*180

  ⑵在平面内,内角都相等、边也都相等的多边形叫正多边形

  ⑶外角:多边形的外角和都等于360

  7、中心对称图形

  ⑴在平面内,一个图形绕某个点旋转180,如果旋转前后的图形相互重合,那么这个图形叫做中心对称图形

  ⑵中心对称图形上的每一对对应点所连成的线段都被对称中心平分

【数学四边形的知识点】相关文章:

数学平行四边形重要知识点01-20

初二数学有关空间四边形部分知识点总结10-28

初二数学知识点总结:平行四边形的面积11-30

小学三年级数学的四边形知识点11-18

五年级数学《平行四边形》知识点归纳01-20

《数学广角》知识点04-02

数学函数知识点12-12

数学集合的知识点01-26

中考数学的知识点02-22