五年级数学知识点轴对称

时间:2023-03-27 16:39:46 晓怡 数学 我要投稿
  • 相关推荐

五年级数学知识点轴对称

  在我们上学期间,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点也可以通俗的理解为重要的内容。想要一份整理好的知识点吗?以下是小编帮大家整理的五年级数学知识点轴对称,希望对大家有所帮助。

五年级数学知识点轴对称

  五年级数学知识点轴对称 篇1

  轴对称图形

  1、轴对称图形和对称轴:将图形沿着一条直线对折,如果直线两侧部分能够完全重合,这样的图形叫做轴对称图形。折痕所在的这条直线叫做对称轴。

  2、画对称轴的方法:用对折的方法寻找对称轴。对称轴要画成虚线。

  3、画轴对称图形另一半的方法:

  (1)找出所给图形的关键点。

  (2)数出或量出图形关键点到对称轴的距离。

  (3)在对称轴的`另一侧找出关键点的对称点。

  (4)对照所给图形顺次连接各点。

  4、画对称图形都要画出对称轴。

  图形的平移

  1、平移的意义:物体在同一平面内沿直线运动,这种运动现象叫做平移。

  2、平移的特点:物体或图形平移后,它们的形状、大小、方向都不改变。

  3、画平移图形的方法:

  (1)找出图形的关键点或关键线段作参照点或参照线段。

  (2)按指定方向和格数把参照点或参照线段平移到新位置,描出各点或画出线段。

  (3)把各点按照原图顺序连接起来。

  图形的旋转

  1、旋转的意义:物体绕着某一点转动,这种运动现象叫做旋转。

  2、旋转的方向:顺时针方向或逆时针方向。

  3、旋转的三个关键点:旋转中心、旋转方向、旋转角度。

  4、旋转的性质:图形旋转后,图形的对应点、对应线段都旋转相应的角度,对应点到旋转点的距离相等。

  5、旋转的特征:图形旋转后,形状、大小都没有发生变化,只是位置变了。

  6、简单图形旋转90°的画法:

  (1)找出图形的关键线段或关键点,用三角板做关键线段的垂线段。

  (2)从旋转点开始,在所作的垂线上画出与原线段相等的长度。

  (3)按照原图形顺次连接所画的对应点。

  五年级数学知识点轴对称 篇2

  关于轴对称知识点总结内容,希望同学们很好的掌握下面的内容。

  1、轴对称图形:

  一个图形沿一条直线对折,直线两旁的部分能够完全重合。

  这条直线叫做对称轴。互相重合的点叫做对应点。

  2、轴对称:

  两个图形沿一条直线对折,其中一个图形能够与另一个图形完全重合。

  这条直线叫做对称轴。互相重合的点叫做对应点。

  3、轴对称图形与轴对称的`区别与联系:

  (1)区别。

  轴对称图形讨论的是"一个图形与一条直线的对称关系" ;轴对称讨论的是"两个图形与一条直线的对称关系"。

  (2)联系。

  把轴对称图形中"对称轴两旁的部分看作两个图形"便是轴对称;把轴对称的"两个图形看作一个整体"便是轴对称图形。

  希望上面对轴对称知识点总结内容,可以很好的帮助同学们对此知识的巩固学习,相信同学们会从中学习的很棒的吧。

  五年级数学知识点轴对称 篇3

  1、定义

  在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。比如说圆、正方形、等腰三角形、等边三角形、等腰梯形等。

  2、举例

  例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对 称图形.有的轴对称图形有不止一条对称轴,但轴对称图形最少有一条对称轴。圆有无数条对称轴,都是经过圆心的直线。

  要特别注意的是线段,它有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线。

  3、性质

  1.对称轴是一条直线。

  2.垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。线段垂直平分线上的点到线段两端的距离相等。

  3.在轴对称图形中,对称轴两侧的`对应点到对称轴两侧的距离相等。

  4.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

  5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线

  6.图形对称。

  定理

  定理1:关于某条直线对称的两个图形是全等形。

  定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。

  定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。

  定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。

  生活作用

  1、为了美观,比如天安门,对称就显的美观漂亮;

  2、保持平衡,比如飞机的两翼;

  3、特殊工作的需要,比如五角星,剪纸

  五年级数学知识点轴对称 篇4

  1.基本概念:

  ⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

  ⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。

  ⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

  ⑷等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

  ⑸等边三角形:三条边都相等的三角形叫做等边三角形。

  2.基本性质:

  ⑴对称的性质:

  ①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。

  ②对称的图形都全等。

  ⑵线段垂直平分线的性质:

  ①线段垂直平分线上的点与这条线段两个端点的距离相等。

  ②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。

  ⑶关于坐标轴对称的点的坐标性质

  ⑷等腰三角形的性质:

  ①等腰三角形两腰相等。

  ②等腰三角形两底角相等(等边对等角)。

  ③等腰三角形的顶角角平分线、底边上的`中线,底边上的高相互重合。

  ④等腰三角形是轴对称图形,对称轴是三线合一(1条)。

  ⑸等边三角形的性质:

  ①等边三角形三边都相等。

  ②等边三角形三个内角都相等,都等于60°

  ③等边三角形每条边上都存在三线合一。

  ④等边三角形是轴对称图形,对称轴是三线合一(3条)。

  3.基本判定:

  ⑴等腰三角形的判定:

  ①有两条边相等的三角形是等腰三角形。

  ②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。

  ⑵等边三角形的判定:

  ①三条边都相等的三角形是等边三角形。

  ②三个角都相等的三角形是等边三角形。

  ③有一个角是60°的等腰三角形是等边三角形。

  4.基本方法:

  ⑴做已知直线的垂线:

  ⑵做已知线段的垂直平分线:

  ⑶作对称轴:连接两个对应点,作所连线段的垂直平分线。

  ⑷作已知图形关于某直线的对称图形:

  ⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短。

  初中女生学好数学的方法

  养成预习的习惯

  预习是一个很重要的点,尤其对于基础不好的女生来说,你本来基础就不好了,上课听的话更容易听不懂,这样很影响上课效率。在家提前预习的目的,就是为了先了解学习内容,所谓笨鸟先飞,所以准备工作一定要做好。提前预习好了,这样上课的话更容易懂一点,对知识的理解也更深一点,上课效率高了,做题自然就会了。

  抓学习节奏

  数学课没有一定的速度是无效学习,慢腾腾的学习是训练不出思维速度,训练不出思维的敏捷性,是培养不出数学能力的,这就要求在数学学习中一定要有节奏,这样久而久之,思维的敏捷性和数学能力会逐步提高。

  整理数学笔记

  准备一本笔记本,把一些重要的公式,基本内容记录下来。不要以为数学只要一直刷题就可以了。连公式都记不住,再怎么刷也是无用的,效率不高,事倍功半!所以要把知识点记录下来,在配上典型例题,就可以熟记知识点,还加强运用,提高效率。

  数学整式的加减知识点

  1.整式加减的理论根据是:去括号法则,合并同类项法则,以及乘法分配率。

  去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。

  2.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  合并同类项:

  (1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。

  (2)合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

  (3)合并同类项步骤:

  a.准确的找出同类项。

  b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。

  c.写出合并后的结果。

  五年级数学知识点轴对称 篇5

  1、轴对称图形就是把一个图形沿着某一条只限对折,对折后直线两侧的部分完全重合,这样的图形就是轴对称图形。折痕所在的直线是图形的对称轴。

  2、轴对称图形的特征:对折后,对称轴两侧能够完全重合。

  3、画简单轴对称图形的方法:

  (1)、找出已知图形的几个关键点;

  (2)、然后根据各个对称点到对称轴的距离相等的特点,在对称轴的另一侧找出关键点的对称点。

  (3)、最后按照已知图形的形状顺序连接个对称点,就画出了所有图形的'另一半。

  4、判断一个图形是否是轴对称图形的方法:可以利用轴对称图形的意义进行判断,即把这个图形沿某条直线对折,看折痕两侧的图形能否完全重合,能够重合的图形就是轴对称图形,不能完全重合的图形就不和轴对称图形。

【五年级数学知识点轴对称】相关文章:

初中数学轴对称知识点06-20

中考数学轴对称的知识点07-25

初二数学《轴对称》知识点07-11

初二数学轴对称的知识点集锦08-10

初二数学轴对称知识点集锦06-18

数学用坐标表示轴对称的知识点07-28

初二数学轴对称知识点总结07-04

初二数学轴对称图形的知识点07-12

中考数学冲刺轴对称知识点讲解06-20