数学 百文网手机站

数学四年级上册第五单元知识点

时间:2022-11-09 09:26:13 数学 我要投稿

数学四年级上册第五单元知识点

  在我们平凡无奇的学生时代,很多人都经常追着老师们要知识点吧,知识点就是一些常考的内容,或者考试经常出题的地方。还在为没有系统的知识点而发愁吗?下面是小编精心整理的数学四年级上册第五单元知识点,欢迎大家分享。

数学四年级上册第五单元知识点

  数学四年级上册第五单元知识点 1

  《除法》

  除数是整十数的除法

  知识点:

  1、用竖式求除数是两位数(整十数)除法。注意:三位数除以两位数,商要写在个位上。

  2、用乘法进行验算。

  补充知识点:

  除数是整十数,商也是整十数的竖式计算方法。注意在商的末尾必须补0,它起到占位的作用。

  路程、时间和速度知识点:

  1、路程、时间和速度之间的关系。

  路程=速度×时间时间=路程÷速度速度=路程÷时间

  2、利用上面三个关系式解决生活中的实际问题。

  3、讲出意义并能比较速度的快慢。如:4千米/时

  12千米/分340米/秒30万千米/秒

  把除数看作整十数试商知识点:

  1、笔算三位数除以两位数的方法,试商时把除数看作整十数试商。

  2、了解被除数、除数和商之间的关系。被除数÷除数=商……余数;被除数=除数×商+余数,为验算做好准备。

  三位数除以两位数知识点:

  1、笔算除法的方法:

  (1)、从被除数的最高位除起。除数有几位,就看被除数的前几位,如果被除数比除数小,就要多看前一位。

  (2)、除到被除数哪一位,就把商写在哪一位的上面。

  (3)、除到被除数的哪一位不够商1,就在哪一位的上面写0。

  (4)、每次除得的余数必须比除数小。

  2、体验改商的过程,掌握改商的方法。在试商的时候,如果在估商的时候,把除数变大了,商就可能变小;如果把除数变小了,商就可能变大。(或者当所得的余数大于等于除数时,商小了需要调大;当试的商与除数的乘积大于被除数的时候,则商要调小。)

  补充知识点:

  1、单价×数量=总价单价=总价÷数量数量=总价÷单价

  工作效率×工作时间=工作总量工作总量÷工作时间=工作效率

  2、确定商是几位数的方法:三位数除以两位数,如果前两位够商1,商则是两位数;如果前两位不够商1,商则是一位数。

  商不变的规律知识点:

  1、商不变的规律:被除数和除数同时乘或除以相同的数(0除外),商不变。

  2、根据商不变的性质计算150÷25800÷252000÷125因为25乘4能得到100,125乘8能得到1000,所以将被除数和除数同时扩大4倍、8倍。

  补充知识点:

  1、被除数不变,除数扩大或缩小若干倍(0除外),商随着缩小或扩大相同的倍数。

  2、除数不变,被除数扩大或缩小若干倍(0除外),商随着扩大或缩小相同的倍数。

  数学四年级上册第五单元知识点 2

  1、除法计算法则:除数是两位数的除法,先用除数试除被除数的前两位,如果前两位不够除,就试除被除数的前三位,除到哪一位,商就上到哪一位的上面,每次除得的余数一定要比除数小。

  2、除数是两位数的除法,一般把除数看作和它接近的整十数来试商;试商大了要调小,试商小了要调大。直到所得的余数比除数小为止。

  3、三位数除以两位数,商可能是一位数,也可能是两位数

  4、商不变性质:

  ①在除法里,被除数和除数同时乘(或除以)几(0除外),商不变。

  ②在除法里,除数不变,被除数乘(或除以)几(0除外),商也要乘(或除以)几。

  ③在除法里,被除数不变,除数乘(或除以)几,则商就除以(或乘)几。

  7、有余除法关系式:被除数÷除数=商……余数

  被除数=商×除数+余数

  数学有余数的除法知识点

  一、有余数的除法

  1、有余数的除法的意义:在平均分一些物体时,有时会有剩余。

  2、余数与除数的关系:在有余数的除法中,余数必须比除数小。最大的余数小于除数1,最小的余数是1。

  3、笔算除法的计算方法:

  (1)先写除号“厂”

  (2)被除数写在除号里,除数写在除号的左侧。

  (3)试商,商写在被除数上面,并要对着被除数的个位。

  (4)把商与除数的乘积写在被除数的下面,相同数位要对齐。

  (5)用被除数减去商与除数的乘积,如果没有剩余,就表示能除尽。

  4、有余数的除法的计算方法可以分四步进行:一商,二乘,三减,四比。

  (1)商:即试商,想除数和几相乘最接近被除数且小于被除数,那么商就是几,写在被除数的个位的上面。

  (2)乘:把除数和商相乘,将得数写在被除数下面。

  (3)减:用被除数减去商与除数的乘积,所得的差写在横线的下面。

  (4)比:将余数与除数比一比,余数必须必除数小。

  学习数学的思维方法

  1、逻辑法

  逻辑是一切思考的基础。逻辑思维,是人们在认识过程中借助于概念、判断、推理等思维形式对事物进行观察、比较、分析、综合、抽象、概括、判断、推理的思维过程。逻辑思维,在解决逻辑推理问题时使用广泛。

  2、逆向思维法

  逆向思维也叫求异思维,它是对司空见惯的似乎已成定论的事物或观点反过来思考的一种思维方式。敢于“反其道而思之”,让思维向对立面的方向发展,从问题的相反面深入地进行探索,树立新思想,创立新形象。

  3、分类法

  根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。

  分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不重复、不遗漏、不交叉。

  数学四年级上册第五单元知识点 3

  大数的认识

  1、10个一千是一万,10个一万是十万,10个十万是一百万,10个一百万是一千万。

  2、10个一千万是一亿,10个一亿是十亿,10个十亿是一百亿,10个一百亿是一千亿。

  3、一(个)、十、百、万、十万、百万、千万、亿、十亿……都是计数单位。

  4、按照我国的计数习惯,从右边起,每四个数位是一级。

  数位顺序表

  数级……亿级万级个级

  数位……千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位

  计数单位……千亿百亿十亿亿千万百万十万万千百十个

  5、每相邻两个计数单位之间的进率都是10的计数方法叫做十进制计数法。

  6、读数时,只是在每一级的末尾加上“万”或“亿”字;每级末尾的0都不读,其它数位有一个0或几个0,都只读一个“零”。

  7、写数时,万级和亿级上的数都是按照个级上数的方法来写,哪一位不够用0来补足。改写“万”或“亿”作单位的数,只要将末尾的4个0或8个0去掉或加上“万”或“亿”字就行了。1.把多位数改写成“万”、“亿”。中间要用“=”连接

  8、通常我们用“四舍五入”的方法省略尾数求一个数的近似数。

  方法是:看尾数位上的数,如果是4或比4小,就把尾数舍去,并在数的末尾添上一个计数单位“万”或者“亿”;如果是5或比5大,要在前一位加1,再把尾数舍去,添上计数单位“万”或者“亿”。得出的是近似数,中间要用“≈”连接。

  9、表示物体个数的1,2,3,4,5,6,7,8,9,10,11,…都是自然数。一个物体也没有用0表示,0也是自然数。最小的自然数是0,没有的自然数,自然数的个数是无限的。

  10、我国在十四世纪发明的至今仍在使用的计算工具是算盘。算盘上方一个珠子代表5,下方一个珠子表示1。

  11、在计算器上,ON/C键是开关及清屏键,CE键是清除键,AC键是归0键。+、-、×、÷键是运算符号键。

  怎么样才能打好数学基础

  第一,重视数学公式。有很多同学数学学不好就是因为对概念和公式不够重视,具体的表现为对数学概念的理解只是停留在表明,不去挖掘引申的含义,对数学概念的特殊情况不明白。还有对数学概念和公式有的学生只是死记硬背,学生缺乏对概念的理解。

  还有一部分同学不重视对数学公式的记忆。其实记忆是理解的基础。我们设想如果你不能将数学公式烂熟于心,那么又怎么能够在数学题目中熟练的应用呢?

  第二,就是总结那些相似的数学题目。当我们养成了总结归纳的习惯,那么的学生就会知道自己在解决数学题目的时候哪些是自己比较擅长的,哪些是自己还不足的。

  同时善于总结也会明白自己掌握哪些数学的解题方法,只有这样你才能够真正掌握了数学的解题技巧。其实,做到总结和归纳是学会数学的关键,如果学生不会做到这一点那么久而久之,不会的数学题目还是不会。

  小学数学整数的概念

  十进制计数法;一(个)、十、百、千、万……都叫做计数单位.其中“一”是计数的基本单位.10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十.这种计数方法叫做十进制计数法

  整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读.其他数位一个或连续几个0都只读一个“零”.

  整数的写法:从高位一级一级写,哪一位一个单位也没有就写0.

  四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1.这种求近似数的方法就叫做四舍五入法.

  整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推.

  数学四年级上册第五单元知识点 4

  1.直线、射线、角

  直线:向两端无限延伸的线,直线无端点。

  射线:能像一个方向延伸的线,射线有一个端点。

  线段:不能延伸的线,线段有两个端点。

  角:

  具有公共端点的两条射线组成的图形叫做角。

  这个公共端点叫做角的顶点,这两条射线叫做角的两条边。

  2.直线、射线与线段的联系和区别

  1)直线和射线都可以无限延伸,因此无法量出长短。

  2)线段可以量出长度。

  3)线段有两个端点,直线没有端点,射线只有一个端点。

  3.角的特征

  数学四年级上册第五单元知识点 5

  第一单元知识点(四则运算)

  1. 在没有括号的算式里,如果只有加、减法或者只有乘除法,都要从左往右按顺序计算。(这是同级运算)

  2. 在没有括号的算式里,有乘、除法和加减法,要先算乘除法,在算加减法。(这是两级运算)

  3. 算式里有括号,先算括号里面的,在算括号外面的。

  4. 加法、减法、乘法和除法统称四则运算。

  5. 一个数加上0还得原数,一个数减去0也得原数。

  6. 被减数等于减数,差是0。

  7. 一个数和零相乘,仍得0。

  8. 0除以一个非0的数,还得0。

  9. 0不能作除数。

  10.在解决问题时,如果列综合算式,必须用脱式计算。

  11.任何数除以0都得0。(×)因为0不能做除数。小学四年级数学下册四则运算知识点

  第二单元知识点(观察物体)

  1. 如何确定物体所在的位置?

  (1)明确方向。

  (2)明确距离。

  2.根据方向和距离来确定物体的位置。

  3.在生活中一般先说物体所在方向离的近(夹角较小)的方位。

  4.平面图形的一般画法:

  (1)先确定某建筑物的方向。

  (2)再确定角度。(测量角度时,哪个方位在前,0刻度线就对准谁。)

  (3)最后确定距离。

  5.两个城市的位置具有相对性,方向相对,角度和距离不发生改变。例如:甲地在乙地的南偏东30度500米处,则乙地在甲地的北偏西30度500米处。小学四年级数学观察物体知识点

  第三单元知识点(运算定律)

  1.两个数相加,两个加数交换位置,和不变。这叫做加法交换律。

  用字母表示为:a+b=b+a

  2.三个数相加,先把前两个数相加,再加第三个数,或者先把后两个数相加,再加第一个数,和不变。这叫做加法结合律。用字母表示为:(a+b)+c=a+(b+c)

  3.两个数相乘,交换两个因数的位置,积不变。这叫做乘法交换律。

  用字母表示为:a×b=b×a

  4.三个数相乘,先让前两个数相乘,再乘第三个数,或者先让后两个数相乘,再乘第一个数,积不变。这叫做乘法结合律。

  用字母表示为:(a×b) ×c=a×(b×c)

  5.两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。这叫做乘法分配律。用字母表示为:(a+b)×c=a×c+b×c

  6. 类似于乘法分配律的简便公式;

  (a-b)×c=a×c-b×c

  (a+b)÷c=a÷c+b÷c

  (a-b)÷c=a÷c-b÷c

  7.从一个数里连续减去两个数,等于从这个数里减去另两个数的和。这叫做减法的运算性质。用字母表示为:a-b-c=a-(b+c)

  8.在一个带有括号的算式中,括号前面是“+”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:a+(b+c)=a+b+c a+(b-c)=a+b-c

  括号前面是“-”,去掉括号后,括号里面的运算符号发生了变化,“+”变“-”, “-”变“+”。 用字母表示为:a-(b+c)=a-b-ca-(b-c)=a-b+c

  9.一个数连续除以两个数,等于这个数除以另两个数的积。这时除法的运算性质。用字母表示为:a÷b÷c=a÷(b×c)

  10. 在一个带有括号的算式中,括号前面是“×”,去掉括号后,括号里面的运算符号不发生改变。用字母表示为:

  a×(b×c)=a×b×c a×(b÷c)=a×b÷c

  括号前面是“÷”,去掉括号后,括号里面的运算符号发生了改变。用字母表示为:a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c

  12.另两种简便方法:

  (1)把一个因数改写成两个一位数相乘的形式。

  (2)把一个因数改写成两个数相除的形式,然后变成乘除混和运算。小学四年级数学运算定律知识点

  第四单元知识点(小数的意义和性质)

  1. 在进行测量和计算时,往往不能正好得到整数的结果,这时就需要用小数来表示,这样就产生了小数。

  2. 分母是10、100、1000……的分数可以仿照整数的写法写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几……的数,叫做小数。

  3. 小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……每相邻两个计数单位间的进率是10。

  4.一位小数的计数单位是十分之一(写作0.1),两位小数的计数单位是百分之一(写作0.01),,三位小数的计数单位是千分之一(写作0.001)。

  5.十分之几用一位小数表示,百分之几用两位小数表示,千分之几用三位小数表示……

  6. 小数的读法:

  (1)先读整数部分,再读点,最后读小数部分。

  (2)整数部分按照整数的读法来读,小数部分要依次读出每个数字。

  (3)整数部分是0的小数,整数部分就读“零”,小数部分有几个0,就读几个零。

  7.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。

  8.利用小数的性质进行小数的化简和改写。

  例如:0.70=0.7 105.0900=105.09(这是小数的化简)

  又如:不改变数的大小,把下面各数写成三位小数

  0.2=0.200 4.08=4.0803=3.000(这是改写小数)

  9.如何比较小数的大小?

  先比较整数部分,整数部分相同,比较十分位上的数;十分位上的数相同,比较百分位上的数;百分位上的数相同,比较千分位上的数……

  10.小数点移动的规律:

  (1)小数点向右

  移动一位,小数就扩大到原数的10倍;

  移动两位,小数就扩大到原数的100倍;

  移动三位,小数就扩大到原数的1000倍;

  ……

  (2)小数点向左

  移动一位,小数就缩小到原数的1/10;

  移动两位,小数就缩小到原数的1/100;

  移动三位,小数就缩小到原数的1/1000;

  ……

  11.把量和单位名称合起来的数叫名数。

  12.单名数:只带一个单位名称的名数。例如:4千米、0.8吨、15.38元……

  13.复名数:带有两个或两个以上的单位名称的名数。例如:

  20元5角8分 5吨600克……

  14.名数改写的规律:先找进率;再看是把高级单位改写成低级单位,还是是把低级单位改写成高级单位;最后移动小数点。口诀如下:

  (1)高到低,乘进率,小数点,向右移,移几位,看进率。

  例如:1.32千克=(1320)克 (58 )厘米=0.58米

  1千克=1000克1米=100厘米

  高→低 低←高

  1.32×1000=1320克0.58×100=58厘米

  (2)低到高,用除法,小数点,向左移,移几位,看进率。

  例如:

  7450米=(7.45 )千米 (9.02)吨=9020千克

  1千米=1000米1吨=1000千克

  低→高 高←低

  7450÷1000=7.45千米 9020÷1000=9.02吨

  15.求小数的近似数,可用“四舍五入”法。

  16.在表示近似数时,小数末尾的0不能去掉。

  17.求小数的近似数的方法:

  求近似数时,保留整数,表示精确到个位,看十分位上的数;保留一位小数,表示精确到十分位,看百分位上的数;保留两位小数,表示精确到百分位,看百分位上的数;保留三位小数,表示精确到千分位,看万分位上的数……。然后根据“四舍五入”法进行取舍。

  例如:9.953≈ 10(保留整数)

  9.953≈10.0 (保留一位小数)

  9.953≈9.95 (保留两位小数)

  23.4395≈23.440 (保留三位小数)

  18. 1.0比1精确。保留的位数越多,数就越精确。

  19.如何把一个数改写成以万为单位的数?

  方法一:把已知数的小数点向左移动四位,进行化简后,在数的末尾加写一个万字。

  方法二:(1)先找万位;(2)在万位后面点“.”;(3)根据实际情况进行化简;(4)在数的末尾加写一个万字;(5)如果有单位名称一定照抄过来。

  20.如何把一个数改写成以亿为单位的数?

  方法一:把已知数的小数点向左移动八位,进行化简后,在数的末尾加写一个亿字。

  方法二:(1)先找亿位;(2)在亿位后面点“.”;(3)根据实际情况进行化简;(4)在数的末尾加写一个亿字;(5)如果有单位名称一定照抄过来。

  注:对于改写的方法,同学们灵活掌握。

  21.下列各数中的“6”分别表示什么?

  6.32(表示6个一) 0.6(表示6个十分之一)0.86(表示6个百分之一)

  62.32(表示6个十)3.416(表示千分之一)

  22.三位小数一定小于四位小数。(×)例如:1.003﹥0.5678

  23.去掉小数点后面的0,小数的大小不变。(×)

  应该是去掉小数末尾的零,小数的大小不变。

  24.小数就是比1小的数。(×)例如:10.1﹥1

  25.近似数是0.5的两位小数有5个。(×)

  近似数是0.5的两位小数有9个,分别是:0.45、0.46、0.47、0.48、0.49、0.51、0.52、0.53、0.54。(先看百分位上的数,再利用“四舍五入” 法。)

  26.近似数4.0与精确数4.0末尾的0都可以去掉。(×)

  在表示近似数时,小数末尾的0不能去掉。

  27.小数的位数越多,数就越大。(×)

  28.小数都比自然数小。(×)

  29.整数都大于小数。(×)

  30.0.4与0.6之间的小数只有一个。(×)因为0.4与0.6之间的'小数有无数个。31.近似数是6.50的三位小数中,最大是(6.504),最小是(6.495)。

  方法:求最大近似数时,一定比6.50大,千分位上的数必须“舍”,也就是千分位上只能是1、2、3、4,其中最大的数是4,所以近似数是6.50的三位小数中,最大是6.504。

  求最小的近似数时,一定比6.50小一个计数单位(本题少一个0.01,也就是6.49),这时千分位上的数必须“入”, 千分位上只能是5、6、7、8、9,其中最小的数是5,所以近似数是6.50的三位小数中,最小是6.495。小学四年级数学知识点:小数的意义和性质

  第五单元知识点(三角形)

  1.由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

  2.三角形有3条边,3个角,3个顶点。

  3.从三角形的一个顶点到它的对边做一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。

  4.三角形有3条高,3个底。

  5.三角形具有稳定性,不易变形。

  6.三角形任意两边的和大于第三边。

  7.三角形任意两边的差小于第三边。

  8. 快速判断任意三条线段能否围成一个三角形:看两条较短的线段之和是否大于第三条线段。

  9.直角三角形的两条直角边互为底和高。

  10.三个角都是锐角的三角形,是锐角三角形。

  11.有一个直角的三角形,是直角三角形。

  12.有一个钝角的三角形,是钝角三角形。

  13.三角形按角分:锐角三角形、直角三角形、钝角三角形

  13.三角形按边分:普通三角形、等腰三角形、等边三角形

  14.有两条边相等的三角形是等腰三角形。(按边)

  有两个角相等的三角形是等腰三角形。(按角)

  15.有三条边相等的三角形是等边三角形。(按边)

  有三个角相等的三角形是等边三角形。(按角)

  注:课本83页三角形集合图。

  16.等边三角形是特殊的等腰三角形。

  17.等边三角形一定是锐角三角形。

  18.等腰三角形的两腰相等,两个底角相等。

  19.等边三角形的三条边相等,三个角也相等,都是60度。

  20.等边三角形也叫正三角形。

  21.等腰三角形中,两腰相交于一点形成的夹角是顶角;两腰与底相交形成的两个夹角是底角。(P84图)

  22.三角形的内角和是180度。

  23.多边形的内角和=180度×(多边形的边数-2)

  24. 任意一个四边形的内角和是360度。

  25.两个完全一样的三角形可以拼成三角形、正方形、长方形、平行四边形、和四边形。

  26.最少用2个直角三角形可以拼成一个长方形;

  最少用3个等边三角形可以拼成一个等腰梯形。

  最少用2个等边三角形可以拼成一个菱形。

  27.无论是什么形状的图形,没有重叠、没有空隙地铺在平面上,就是密铺。

  28.把任何一个三角形的三个内角剪下来,都可以拼成一个平角。

  29.所有的等边三角形都是锐角三角形。

  30.有三个角的图形一定是三角形。(×)

  31.有两个锐角的三角形一定是锐角三角形。(×) 因为也有可能是直角三角形。

  32.等腰三角形一定是锐角三角形。(×) 因为等腰三角形中可能是等腰直角三角形、等腰锐角三角形、等腰钝角三角形。

  33.一个大三角形和一个小三角形的三个内角和是不相等的。(×)

  因为三角形的内角和是180度。

  34.一个钝角三角形里最多有两个钝角。(×)

  因为任意一个三角形里至少有两个锐角,如果有两个钝角或两个直角,三角形的内和就大于了180度,根本拼不成三角形。

  35.两个三角形一定能拼成一个平行四边形。(×)

  因为必须是两个完全一样的三角形才能拼成一个平行四边形。

  36.用两个直角三角形一定可以拼成一个长方形。(×)

  因为必须是两个完全一样的直角三角形才能拼成一个长方形。

  37.由三条线围成的图形叫做三角形。(×)

  因为由三条线段围成的图形(每相邻两条线段的端点相连)叫做三角形。

  38.三角形的底越长,这条底边上的高就越短。(√)

  39.一个三角形的每一条边的长度确定后,这个三角形的形状就再不发生变化。(√)

  40一个三角形只有一条高。(×) 因为每个三角形都有3条高。

  41.直角三角形的两个锐角的和是90度。(√)

  42.有一个角是60度的等腰三角形一定是正三角形。(√)

  43.0.15时=15分(×)因为每相邻两个时间单位的进率不是100。

  44.0.3与0.30的大小相同,但表示的意义不同,计数单位也不同。(√)

  45.四个完全一样的正三角形可以拼成一个大三角形。(√)小学四年级数学知识点:三角形

  第六、七单元知识点(小数的加法和减法、平均数与条形统计图)

  1.小数加、减法应注意:

  (1)小数点要对齐,也就是相同的数位要对齐;

  (2)从最低位算起;

  (3)得数小数部分末尾有0,一般要把0去掉。

  2.在小数减法中,如果被减数是整数,一般要补齐小数部分,补几位,看减数。例如:20-1.86,列竖式时应写成:20.00-1.86

  3.整数的运算定律在小数运算中同样适用。

  4.关于解决小数中人民币的问题,如没有特殊要求,一般保留两位小数。

  5.条形统计图很容易看出数量的多少,折线统计图不但可以看出数量的多少,而且能清楚地表示出数量的增减变化。

  6.在折线统计图中,所画的线段越接近垂直(或线段越长)说明上升(或下降)的越快;所画的线段越接近水平(或线段越短),说明变化得越小。如果观察不出折线统计图的趋势来,只好计算后再作比较。

  7.折线统计图的特点:能反映变化趋势。

  数学四年级上册第五单元知识点 6

  1、卫星运行 (三位数乘两位数)

  知识点 :

  估算方法。用四舍五入法进行估算。

  利用竖式计算三位数乘两位数。注意,第二个因数的十位要乘三遍,第二步的乘积末尾写在十位上。

  补充 知识点

  时、分、日之间的单位互化。

  1时=60分 1日=24时

  因数中间或末尾有0的三位数乘两位数。

  中间有0也要和因数分别相乘;末尾有0的,要将两个因数0前面数的末位对齐,用0前面的数相乘,乘完之后在落0,有几个0落几个0。

  体育场(实际生活中的估算)

  2、知识点 :

  估算的方法及注意事项:要将因数估成整十、整百或整千的数。估算时注意,要符合实际,接近精确值。

  神奇的计算工具

  3、知识点 :

  在学生原有基础上进一步认识并会使用计算器。

  利用“M+”存储键,“MR”提取键,计算四则运算的题目。

  了解计算机中使用的是二进制计数法,就是满2进1。

  补充 知识点 :了解两个因数越接近(即差越小),积越大,两个因数相等时,积是最大的;两个因数的差越大,积越小。

  探索与发现(一)(有趣的算式)

  4、知识点 :

  第一组算式:积的位数是两个因数位数之和-1,积的最高位和最低位都是1,中间的数字为因数的位数,两边的数字相同并依次减1。(此为回文数)

  第二组算式:积都由1、4、2、8、5、7几个数字组成,而且前后排列的顺序不变,只需要确定末位数字就可以算出积(如果能直接推算出首位数字则更好)

  第三组算式:积的个位都是1,首位都是9;积的位数正好是两个因数位数之和;积的每一位都是由9、8、0、1组成,只要在首位补9,倒数第二位补0就可以了,只有一个8和一个1。

  第四组算式:在0~9的十个数字中,任意选择四个数字,组成数字不重复的最大的四位数和最小的四位数。然后两数相减,并把结果的四个数字重现组成一个最大的四位数与最小的四位数。再次相减······在这样不断重复的过程中,最后得到数字4176。

【数学四年级上册第五单元知识点】相关文章:

四年级上册数学第五单元的知识点07-26

四年级上册数学第五单元知识点07-26

数学四年级第五单元上册知识点06-24

四年级上册数学第五单元精选知识点06-15

第五单元数学广角知识点03-17

数学四年级第五单元上册知识点归纳01-22

四年级数学上册第五单元知识点07-26

数学四年级上册关于第五单元的知识点07-26

四年级上册数学第五单元知识点梳理07-26