数学 百文网手机站

小学数学知识点整理(题型归纳整理)

时间:2021-07-24 18:13:40 数学 我要投稿

小学数学知识点整理(题型归纳整理)

  一、植树问题

小学数学知识点整理(题型归纳整理)

  1非封闭线路上的植树问题主要可分为以下三种情形:

  ⑴如果在非封闭线路的两端都要植树,那么:

  株数=段数+1=全长÷株距-1

  全长=株距×(株数-1)

  株距=全长÷(株数-1)

  ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:

  株数=段数=全长÷株距

  全长=株距×株数

  株距=全长÷株数

  ⑶如果在非封闭线路的两端都不要植树,那么:

  株数=段数-1=全长÷株距-1

  全长=株距×(株数+1)

  株距=全长÷(株数+1)

  2封闭线路上的植树问题的数量关系如下

  株数=段数=全长÷株距

  全长=株距×株数

  株距=全长÷株数

  二、置换问题:

  题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。

  例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张?

  分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=2000(分),比原来的总值多2000-1880=120(分)。而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。

  列式:(2000-1880)÷(20-10)=120÷10=12(张)→10分一张的张数

  100-12=88(张)→20分一张的张数或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。

  三、盈亏问题(盈不足问题):

  题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。解答这类问题时,应该先将两种分配方案进行比较,求出由于每份数的变化所引起的余数的变化,从中求出参加分配的总份数,然后根据题意,求出被分配物品的数量。其计算方法是:

  当一次有余数,另一次不足时:每份数=(余数+不足数)÷两次每份数的差

  当两次都有余数时:总份数=(较大余数-较小数)÷两次每份数的差

  当两次都不足时:总份数=(较大不足数-较小不足数)÷两次每份数的差

  例1、解放军某部的一个班,参加植树造林活动。如果每人栽5棵树苗,还剩下14棵树苗;如果每人栽7棵,就差4棵树苗。求这个班有多少人?一共有多少棵树苗

  分析:由条件可知,这道题属第一种情况。列式:(14+4)÷(7-5)=18÷2=9(人)

  5×9+14=45+14=59(棵)或:7×9-4=63-4=59(棵)

  答:这个班有9人,一共有树苗59棵。

  例2、学校把一些彩色铅笔分给美术组的同学,如果每人分给五枝,则剩下45枝,如果每人分给7枝,则剩下3枝。求美术组有多少同学?彩色铅笔共有几枝?

  (45—3)÷(7-5)=21(人)21×5+45=150(枝)答:略。

  四、年龄问题:

  年龄问题的主要特点是两人的年龄差不变,而倍数差却发生变化。

  常用的计算公式是:

  成倍时小的年龄=大小年龄之差÷(倍数-1)

  几年前的年龄=小的现年-成倍数时小的年龄

  几年后的年龄=成倍时小的年龄-小的现在年龄

  例父亲今年54岁,儿子今年12岁。几年后父亲的年龄是儿子年龄的4倍?

  (54-12)÷(4-1)=42÷3=14(岁)→儿子几年后的年龄

  14-12=2(年)→2年后

  答:2年后父亲的年龄是儿子的4倍。

  例2、父亲今年的年龄是54岁,儿子今年有12岁。几年前父亲的年龄是儿子年龄的7倍?

  (54-12)÷(7-1)=42÷6=7(岁)→儿子几年前的年龄

  12-7=5(年)→5年前

  答:5年前父亲的年龄是儿子的7倍。

  例3、王刚父母今年的年龄和是148岁,父亲年龄的3倍与母亲年龄的差比年龄和多4岁。王刚父母亲今年的年龄各是多少岁?

  (148×2+4)÷(3+1)=300÷4=75(岁)→父亲的年龄

  148-75=73(岁)→母亲的年龄

  答:王刚的父亲今年75岁,母亲今年73岁。

  或:(148+2)÷2=150÷2=75(岁)75-2=73(岁)

  五、鸡兔同笼问题:

  已知鸡兔的总只数和总足数,求鸡兔各有多少只的.一类应用题,叫做鸡兔问题,也叫“龟鹤问题”、“置换问题”。

  一般先假设都是鸡(或兔),然后以兔(或鸡)置换鸡(或兔)。常用的基本公式有:

  (总足数-鸡足数×总只数)÷每只鸡兔足数的差=兔数

  (兔足数×总只数-总足数)÷每只鸡兔足数的差=鸡数

  例:鸡兔同笼共有24只。有64条腿。求笼中的鸡和兔各有多少只?

  (64-2×24)÷(4-2)=(64-48)÷(4-2)=16÷2=8(只)→兔的只数

  24-8=16(只)→鸡的只数

  答:笼中的兔有8只,鸡有16只。

  六、牛吃草问题(船漏水问题):

  若干头牛在一片有限范围内的草地上吃草。牛一边吃草,草地上一边长草。当增加(或减少)牛的数量时,这片草地上的草经过多少时间就刚好吃完呢?

  例1、一片草地,可供15头牛吃10天,而供25头牛吃,可吃5天。如果青草每天生长速度一样,那么这片草地若供10头牛吃,可以吃几天?

  分析:一般把1头牛每天的吃草量看作每份数,那么15头牛吃10天,其中就有草地上原有的草,加上这片草地10天长出草,以下类推……其中可以发现25头牛5天的吃草量比15头牛10天的吃草量要少。原因是因为其一,用的时间少;其二,对应的长出来的草也少。这个差就是这片草地5天长出来的草。每天长出来的草可供5头牛吃一天。如此当供10牛吃时,拿出5头牛专门吃每天长出来的草,余下的牛吃草地上原有的草。

  (15×10-25×5)÷(10-5)=(150-125)÷(10-5)=25÷5=5(头)→可供5头牛吃一天。

  150-10×5=150-50=100(头)→草地上原有的草可供100头牛吃一天

  100÷(10-5)=100÷5=20(天)

  答:若供10头牛吃,可以吃20天。

  例2、一口井匀速往上涌水,用4部抽水机100分钟可以抽干;若用6部同样的抽水机则50分钟可以抽干。现在用7部同样的抽水机,多少分钟可以抽干这口井里的水?

  (100×4-50×6)÷(100-50)=(400-300)÷(100-50)=100÷50=2

  400-100×2=400-200=200

  200÷(7-2)=200÷5=40(分)

  答:用7部同样的抽水机,40分钟可以抽干这口井里的水。

  七、相遇问题

  相遇路程=速度和×相遇时间

  相遇时间=相遇路程÷速度和

  速度和=相遇路程÷相遇时间

【小学数学知识点整理(题型归纳整理)】相关文章:

数学中考知识点归纳整理02-17

高考数学知识点归纳整理02-17

高考数学知识点整理归纳02-17

高二数学知识点归纳整理02-16

高考数学知识点全归纳整理02-17

初三数学知识点归纳整理02-24

小学数学复习方法整理归纳12-26

浮力物理知识点整理归纳04-02

高考数学轨迹方程的求解知识点归纳整理09-15