数学 百文网手机站

六年级数学圆的认识知识点

时间:2021-07-24 17:50:59 数学 我要投稿

六年级数学关于圆的认识知识点

  六年级数学圆的认识复习知识点

六年级数学关于圆的认识知识点

  一、认识圆形

  1、圆的定义:圆是由曲线围成的一种平面图形。

  2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等.

  3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。

  4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。

  5、圆心确定圆的位置,半径确定圆的大小。

  6、在同一个圆内或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。

  7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的1/2。用字母表示为:d=2r或r=d/2

  8、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的这条直线叫做对称轴。

  9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。

  10、只有1条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。只有2条对称轴的图形是:长方形;只有3条对称轴的图形是:等边三角形;只有4条对称轴的图形是:正方形;有无数条对称轴的图形是:圆、圆环。

  11、画对称轴要用铅笔画,同时要用尺子(三角板)画出虚线,这条虚线两端要超出图形一点。

  二、圆的周长

  1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。

  2、圆周率实验:(滚动法)在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,得到圆的周长。或者用线围绕圆形纸片一周量出线的长度就是圆的周长(测绳法)。

  发现,圆周长与它直径的比值(圆周长除以直径)是一个固定数即3倍多一点,我们把它叫做圆周率用字母π表示。

  3、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。用字母π(pai)表示。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。

  (1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。圆周率π是一个无限不循环小数。在计算时,一般取π≈3.14。

  (2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。

  4、圆的周长公式:圆的周长等于圆周率乘直径用字母表示C=πd

  (1)、已知圆的周长求直径用圆的周长除以圆周率,用字母表示

  d=C÷π或圆的周长等于2乘圆周率乘半径,用字母表示C=2πr

  (2)、已知圆的周长求半径用圆的周长除以圆周率的2倍,

  用字母表示r=C÷2π(r=C/2π)

  5、在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。

  6、区分周长的一半和半圆的周长:

  (1)、周长的一半:等于圆的周长÷2

  计算方法:2πr÷2即C半=πr

  (2)半圆的周长:等于圆的周长的一半加直径。计算方法:半圆的周长=5.14r(推导过程C半=2πr÷2+d=πr+d=πr+2r=5.14r)

  一、百分数的意义和写法

  (一)、百分数的意义:表示一个数是另一个数的百分之几。百分数是指的两个数的比,因此也叫百分率或百分比。

  (二)、百分数和分数的主要联系与区别:

  联系:都可以表示两个量的倍比关系。

  区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;

  分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。

  ②、百分数的分子可以是整数,也可以是小数;

  分数的分子不能是小数,只能是除0以外的自然数。

  3、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%”来表示,读作百分之。

  二、百分数和分数、小数的互化

  (一)百分数与小数的互化:

  1、小数化成百分数:把小数点向右移动两位(数位不够用0补足),同时在后面添上百分号。

  2.百分数化成小数:把小数点向左移动两位(数位不够用0补足),同时去掉百分号。

  (二)百分数的和分数的互化

  1、百分数化成分数:先把百分数改写成分母是100的分数,能约分要约成最简分数。

  2、分数化成百分数:

  ①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。

  ②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。(建议用这种方法)

  (三)常见分数小数百分数之间的互化;

  三、用百分数解决问题

  (一)一般应用题

  1、常见的百分率的计算方法:

  一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。

  2、求一个数是另一个数的百分之几用一个数除以另一个数,结果写为百分数形式。

  例如:例如:男生有20人,女生有15人,女生人数占男生人数的百分之几。

  列式是:15÷20=15/20=75﹪

  3、已知单位“1”的量(用乘法),求单位“1”的百分之几是多少的问题,数量关系式和分数乘法解决问题中的关系式相同:

  (1)百分率前是“的”:单位“1”的量×百分率=百分率对应量

  (2百分率前是“多或少”的数量关系:

  单位“1”的量×(1±百分率)=百分率对应量

  4、未知单位“1”的量(用除法),已知单位“1”的百分之几是多少,求单位“1”。方法与分数的方法相同。

  解法: (1)方程:根据数量关系式设未知量为X,用方程解答。

  (2)算术(用除法):百分率对应量÷对应百分率=单位“1”的量

  5、求一个数比另一个数多(少)百分之几的方法与分数的方法相同。只是结果要写为百分数形式。看百分率前有没有比多或比少的问题;

  百分率前是“多或少”的关系式:

  (比少):具体量÷(1-百分率)=单位“1”的量;

  例如:大米有50千克,比面粉树少50﹪,面粉有多少千克。

  列式是:50÷(1-50﹪)

  (比多):具体量 ÷(1+百分率)=单位“1”的量

  例如:工人做110个零件,比原计划多做了10﹪,原计划做多少个?

  列式是:110÷(1+10﹪)

  6、求一个数比另一个数多百分之几的方法:方法与分数的方法相同。

  用两个数的相差量÷单位“1”的量=百分之几

  即①求一个数比另一个数多百分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为百分数形式。

  甲比乙多几分之几的问题,方法A,(甲-乙)÷乙(建议用)

  方法B,甲÷乙-100﹪

  例如:老师计划改40本作业,实际改了50本,实际比计划多改了百分之几?

  列式是:(50-40)÷40=0.25=25﹪

  ②求一个数比另一个数少几分之几:用(大数–小数)÷另一个数(比那个数就除以那个数),结果写为百分数形式。

  乙比甲少几分之几的问题,方法A,(甲-乙)÷甲(建议用)

  方法B,100﹪-乙÷甲

  例如:张三家用了100度电,李四家用了90度电,李四家比张三家少用百分之几?

  (100-90)÷100=0.1=10﹪

  说明:多百分之几不等于少百分之几,因为单位一不同。

  7、如果甲比乙多或少a﹪,求乙比甲少或多百分之几,用a﹪÷(1±a﹪)

  8、求价格先降a﹪又上升a﹪后的价格:1×(1-a﹪)×(1+a﹪)(假设原来的价格为“1”。求变化幅度(求降价后的价格是涨价后价格的百分之几)用1-降价后又上升的百分率。

  三、圆的面积

  1、圆的面积:圆所占平面的大小叫做圆的面积。用字母S表示。

  2、圆面积公式的推导:(1)把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。 长方形的长相当于圆的周长的一半,长方形的宽相当于圆的半径。

  (2)拼出的图形与圆的周长和半径的关系。

  圆的半径 = 长方形的宽

  圆的周长的一半 = 长方形的长

  3、圆面积的计算方法:因为:长方形面积=长×宽

  所以:圆的面积=圆周长的一半×圆的半径

  即S圆=C÷2×r=πr×r=πr

  圆的面积公式:S圆=πr→ r=S圆÷π

  4、环形的面积:一个环形,外圆的半径用字母R表示,内圆的半径用字母r表示。(R=r+环的宽度.)

  S环=πR-πr或环形的面积公式:S环=π(R-r)(建议用这个公式)。

  5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小的倍数是这倍数的平方倍。

  例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大3的平方倍得到9倍。

  6、两个圆:半径比=直径比=周长比;而面积比等于这比的平方。

  例如:两个圆的半径比是2∶3,那么这两个圆的直径比和周长比都是2∶3,而面积比是4∶9

  7、任意一个正方形与它内切圆的面积之比都是一个固定值,即:4∶π

  8、当长方形,正方形,圆的周长相等时,圆面积最大,正方形居中,长方形面积最小。反之,面积相同时,长方形的周长最长,正方形居中,圆的周长最短。

  9、常用各π值结果:π=3.14;2π=6.28;5π=15.7

  10、外方内圆(内切圆)公式S=0.86r推导过程:S=S正-S圆=d-πr =2r×2r-πr=4r-πr=r×(4-π)=0.86r

  11、外圆内方(外切圆)公式S=1.14r推导过程:S=S圆-S正=πr-dr/2×2=2r×r/2×r=πr-2r=r×(π-2)=1.14r(把正方形看成两个面积相等的三角形,三角形的底就是直径,高是半径)

  12、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。扇形的面积与圆心角大小和半径长短有关。

  13、S扇=S圆×n/360;S扇环=S环×n/360

  14、扇形也是轴对称图形,有一条对称轴。

  15、常见半径与直径的周长和面积的结果。

  半径半径的平方直径周长面积

  1126.283.14

  24412.5612.56

  39618.8428.26

  416825.1250.24

  5251031.478.5

  6361237.68113.04

  7491443.96153.86

  8641650.24200.96

  9811856.52254.34

  101002062.8314

  1.52.2539.427.065

  2.56.25515.719.625

  3.512.25721.9838.465

  4.520.35928.2663.585

  5.530.251134.5494.985

  7.556.251547.1176.625

  (一)、比的意义

  1、比的.意义:两个数相除又叫做两个数的比。

  2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

  例如15:10=15÷10=3/2(比值通常用分数表示,也可以用小数或整数表示)

  15 ∶ 10 = 3/2

  前项比号后项 比值

  3、比可以表示两个相同量的关系,即倍数关系。例:长是宽的几倍。

  也可以表示两个不同量的比,得到一个新量。例:路程÷速度=时间。

  4、区分比和比值

  比:表示两个数的关系,可以写成比的形式,也可以用分数表示。

  比值:相当于商,是一个数,可以是整数,分数,也可以是小数。

  5、根据分数与除法的关系,两个数的比也可以写成分数形式。

  6、 比和除法、分数的联系:

  比前项比号“:”后项比值

  除法被除数除号“÷”除数商

  分数分子分数线“—”分母分数值

  7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。

  8、根据比与除法、分数的关系,可以理解比的后项不能为0。

  9、体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。

  10、求比值:用前项除以后项,结果最好是写为分数(不会约分的就不约分)

  例如:15∶10 =15÷10=15/10=3/2

  (二)、比的基本性质

  1、根据比、除法、分数的关系:

  商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。

  分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。

  比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

  2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。

  3、根据比的基本性质,可以把比化成最简单的整数比。

  4.化简比:

  (2)用求比值的方法。注意:最后结果要写成比的形式。

  例如:15∶10=15÷10=15/10=3/2=3∶2

  还可以15∶10=15÷10=3/2 最简整数比是3∶2

  5、比中有单位的,化简和求比值时要把单位化相同再化简和求比值,结果没有单位。

  6.按比例分配:把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。一般有两种解题法

  1,用分率解:按比例分配通常把总量看作单位一,即转化成分率。要先求出总份数,再求出几份占总份数的几分之几,最后再用总量分别乘几分之几。

  例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?

  1+4=5糖占1/5用25×1/5得到糖的数量,水占4/5用25×4/5得到水的数量。

  2,用份数解:要先求出总份数,再求出每一份是多少,最后分别求出几份是多少。

  例如:有糖水25克,糖和水的比为1:4,糖和水分别有几克?

  糖和水的份数一共有1+4=5一份就是25÷5=5糖有1份就是5×1水有4分就是5×4

【六年级数学圆的认识知识点】相关文章:

六年级数学圆的认识知识点07-20

数学圆的认识教案04-08

中考数学圆知识点10-07

数学圆知识点归纳01-20

小学数学圆的知识点07-19

高考数学圆的知识点07-31

圆的认识小学数学教学随笔07-31

圆的认识数学听课记录01-18

小学数学《圆的认识》教学设计09-24