数学 百文网手机站

六年级数学下册知识点

时间:2022-02-18 16:29:50 数学 我要投稿

六年级数学下册知识点

  大部分人都会被环境深深地影响。因此,若是想进入一个学习环境好的初中,就因该将数学给学好。以下是小编整理的六年级数学下册知识点,希望对大家有所帮助。

六年级数学下册知识点

  六年级数学下册知识点 篇1

  一、负数

  1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。

  2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。

  3、能借助数轴初步学会比较正数、0和负数之间的大小。

  4、像-16、-500、-3/8、-0.4…这样的数叫做负数。-3/8读作负八分之三。16,200,3/8,6.3…这样的数叫做正数。正数前面可以加“+”号,也可以省去“+”号。+6.3读作正六点三。0既不是正数,也不是负数。

  5、16℃读作十六摄氏度,表示零上16℃;-16℃读作负十六摄氏度,表示零下16℃

  6、如果2000表示存入2000元,那么-500表示支出了500元。向东走3m记作+3,向西4m记作-4。

  7、在数轴上,从左到右的顺序就是数从小到大的顺序。0是正数和负数的分界点,所有的负数都在0的左边,也就是负数都比0小,而正数都比0大,负数都比正数小。负号后面的数越大,这个数就越小。如:-8<-6。

  二、圆柱和圆锥

  1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。

  2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。

  3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。

  4、圆柱的两个圆面叫做底面,周围的面叫做侧面,底面是平面,侧面是曲面。

  5、圆柱的侧面沿高展开后是长方形,长方形的长等于圆柱底面的周长,长方形的宽等于圆柱的高,当底面周长和高相等时,侧面沿高展开后是一个正方形。

  6、圆柱的表面积=圆柱的侧面积+底面积×2即S表=S侧+S底×2或2πr×h+2×π。

  7、圆柱的侧面积=底面周长×高即S侧=Ch或2πr×。

  8、圆柱的体积=圆柱的底面积×高,即V=sh或πr2×。

  进一法:实际中,使用的材料都要比计算的结果多一些,因此,要保留数的时候,省略的位上的是4或者比4小,都要向前一位进1。这种取近似值的方法叫做进一法。

  9、圆锥只有一个底面,底面是个圆。圆锥的侧面是个曲面。

  10、从圆锥的顶点到底面圆心的距离是圆锥的高。圆锥只有一条高。(测量圆锥的高:先把圆锥的底面放平,用一块平板水平地放在圆锥的顶点上面,竖直地量出平板和底面之间的距离)

  11、把圆锥的侧面展开得到一个扇形。

  12、圆锥的体积等于与它等底等高的圆柱体积的三分之一,即V锥=1/3Sh或πr2×h÷。

  13、常见的圆柱圆锥解决问题:①、压路机压过路面面积(求侧面积);②、压路机压过路面长度(求底面周长);③、水桶铁皮(求侧面积和一个底面积);④、厨师帽(求侧面积和一个底面积);通风管(求侧面积)。

  三、比例

  1、理解比例的意义和基本性质,会解比例。

  2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。

  3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。

  4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。

  5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。

  6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育。

  7、比例的意义:表示两个比相等的式子叫做比例。如:2:1=6:

  8、组成比例的四个数,叫做比例的项。两端的两项叫做外项,中间的两项叫做内项。

  9、比例的性质:在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。例如:由3:2=6:4可知3×4=2×6;或者由x×1。5=y×1。2可知x:y=1.2:1.5。

  10、解比例:根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。例如:3:x=4:8,内项乘内项,外项乘外项,则:4x=3×8,解得x=6。

  11、正比例和反比例:

  (1)、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。用字母表示y/x=k(一定)

  例如:

  ①、速度一定,路程和时间成正比例;因为:路程÷时间=速度(一定)。

  ②、圆的周长和直径成正比例,因为:圆的周长÷直径=圆周率(一定)。

  ③、圆的面积和半径不成比例,因为:圆的面积÷半径=圆周率和半径的积(不一定)。

  ④、y=5x,y和x成正比例,因为:y÷x=5(一定)。

  ⑤、每天看的页数一定,总页数和天数成正比例,因为:总页数÷天数=每天看页数(一定)。

  (2)、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。用字母表示x×y=k(一定

  例如:①、路程一定,速度和时间成反比例,因为:速度×时间=路程(一定)。

  ②、总价一定,单价和数量成反比例,因为:单价×数量=总价(一定)。

  ③、长方形面积一定,它的长和宽成反比例,因为:长×宽=长方形的面积(一定)。

  ④、40÷x=y,x和y成反比例,因为:x×y=40(一定)。

  ⑤、煤的总量一定,每天的烧煤量和烧的天数成反比例,因为:每天烧煤量×天数=煤的总量(一定)。

  12、图上距离:实际距离=比例尺;

  例如:图上距离2cm,实际距离4km,则比例尺为2cm:4km,最后求得比例尺是1:200000。

  13、实际距离=图上距离÷比例尺;

  例如:已知图上距离2cm和比例尺,则实际距离为:2÷1/200000=400000cm=4km。

  14、图上距离=实际距离×比例尺;

  例如:已知实际距离4km和比例尺1:200000,则图上距离为:400000×1/200000=2(cm)

  四、数学广角

  1、经历“抽屉原理”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。

  2、通过“抽屉原理”的灵活应用感受数学的魅力。

  五、总复习

  1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。

  2、巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。

  3、掌握所学几何形体的特征;能够比较熟练地计算一些几何形体的周长、面积和体积,并能应用;巩固所学的简单的画图、测量等技能;巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移、旋转的认识;能用数对或根据方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。

  4、掌握所学的统计初步知识,能够看和绘制简单的统计图表,能够根据数据做出简单的判断与预测,会求一些简单事件的可能性,能够解决一些计算平均数的实际问题。

  5、进一步感受数学知识间的相互联系,体会数学的作用;掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。

  六、统计

  1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。

  2、能根据统计图提供的信息,做出正确的判断或简单预测。

  六年级数学下册知识点 篇2

  1、圆柱是由两个底面和一个侧面三部分组成的。

  2、(1)圆柱的两个圆面叫做底面。

  (2)底面各部分的名称:圆柱的底面圆的圆心、半径、直径和周长分别叫做圆柱的底面圆心、底面半径、底面直径和底面周长。

  (3)底面的特征:圆柱底面是完全相同的两个圆。

  3、(1)圆柱周围的面叫做侧面。

  (2)特征:圆柱的侧面是曲面。

  4、(1)圆柱两个底面之间的距离叫做圆柱的高。

  (2)一个圆柱有无数条高。

  5、把圆柱平行于底面进行切割,切面是和底面大小相同的两个圆;把圆柱沿底面直径垂直于底面进行切割,切面是两个完全相同的长方形。

  6、圆柱的侧面展开图是一个长方形,这个长方形的长等于圆柱底面的周长,宽等于圆柱的高。

  7、在圆柱的上下底面周长上任取一点分别为A、B,连接AB(使AB不是圆柱的高),沿着AB将圆柱的侧面剪开,圆柱展开后是一个平行四边形。

  8、圆柱的底面是圆形,面不是椭圆。

  9、沿高剪开时,圆柱的侧面展开图是一个长方形。

  10、从圆柱的上下两个底面观察会得到圆;从圆柱的正面或侧面观察会得到长方形(或正方形)。

  11、如果圆柱的侧面展开图是个长方形,那么该圆柱的底面周长大约是其底面直径长度的3倍。如果圆柱的侧面展开图是个正方形,那么该圆柱的高大约是其底面直径长度的3倍。

  12、圆柱的侧面积=底面周长×高。如果用字母S表示圆柱的侧面积,用C表示底面周长,用h表示高,则圆柱的侧面积的计算公式是S=Ch

  13、(1)已知圆柱的底面直径和高,可以根据公式:S=πdh直接求出圆柱的侧面积。

  (2)已知圆柱的底面半径和高,可以根据公式:S=2πrh直接求出圆柱的侧面积。

  14、圆柱的表面积是指圆柱的侧面积和两个底面的面积之和。

  15、圆柱的表面积=圆柱的侧面积+底面积×2,用字母表示为S表=S侧+2S底。

  16、(1)已知圆柱的底面半径和高,可以根据公式:S表=2πrh+2πr2直接求出圆柱的表面积。

  (2)已知圆柱的底面直径和高,求圆柱的表面积时,可以根据公式:S表=πdh+π(d÷2)2直接求出圆柱的表面积。

  (3)已知圆柱的底面周长和高,求圆柱的表面积,可以根据公式:S表=Ch+π(C/2π)2=Ch+C2/4π求出圆柱的表面积。

  17、求通风管、烟囱、油管等圆柱形物体的表面积其实就是求它们的侧面积。

  18、把一个圆柱截成n段后,其表面积增加了2(n—1)个底面积。

  19、一个圆柱占空间的大小,叫做这个圆柱的体积。

  20、圆柱的体积=底面积×高,字母公式:V=Sh或V=πr^2h

  21、容积的计算方法和体积的计算方法相同,只是计算容积的数据要从里面测量。

  22、在计算过程中,如果已知圆柱的底面半径、直径或周长,那么要先求出底面积,再求体积。计算公式是:V=πr^2h,V=π(d÷2)^2h,V=π[C÷(2π)]^2h

  23、圆柱的高不变,底面半径、直径或周长扩大到原来的n倍,则体积扩大到原来的n^2倍,若底面半径、直径或周长缩小到原来的1/n,则体积缩小到原来的1/(n^2)。

  24、在圆柱的立体图形中,两个底面圆心之间的距离是圆柱的高,但在圆柱的平面展开图中,长方形的宽(或正方形的边长)才是圆柱的高。

  25、两个圆柱的半径比是1:a(a>0),高的比是a:1,则它们的体积之比是1:a。

  26、圆锥是由一个底面和一个侧面两部分组成。

  (1)底面:圆锥的圆面就是它的底面,它有一个底面。圆锥底面的圆心、半径、直径和周长分别叫做圆锥的底面圆心、底面半径、底面直径和底面周长,分别用字母O、r、d和C表示。

  (2)侧面:圆锥周围的曲面就是它的侧面。

  (3)高:从圆锥的顶点到底面圆心的距离是圆锥的高。高用字母h表示。

  (4)圆锥只有一条高。

  (5)转动直角三角形可以形成圆锥。

  27、

  (1)从圆锥的顶点到底面圆周上任意一点的线段是圆锥的母线,圆锥母线的长度大于圆锥的高。

  (2)任意画一条母线,把圆锥的侧面展开,得到一个扇形,因此圆锥的侧面展开图是一个扇形。

  (3)把圆锥平行于底面切割,切面是两个完全相同的圆,该圆要比圆锥的底面圆小;把圆锥沿高垂直于底面进行切割,切面则是两个完全相同的等腰三角形。

  28、半圆能围成圆锥,但整圆不能围成圆锥。

  29、圆锥的体积=底面积×高÷3,用字母表示:V圆锥=V圆柱÷3=Sh÷3

  30、圆柱和圆锥的关系:

  (1)等底等高的圆柱和圆锥:圆柱的体积比圆锥的体积多2倍;圆锥的体积比圆柱的体积少2/3。

  (2)等底等高的圆柱和圆锥:圆锥的高是圆柱的高的3倍,或者说圆锥的高比圆柱的高多2倍;圆柱的高是圆锥的高的1/3,或者说圆柱的高比圆锥的高少2/3。

  (3)等高等体积的圆柱和圆锥:圆锥的底面积是圆柱的底面积的3倍,或者说圆锥的底面积比圆柱的底面积多2倍;圆柱的底面积是圆锥的底面积的1/3,或者说圆柱的底面积比圆锥的底面积少2/3。

  31、

  (1)已知圆锥的底面半径和高,可以直接利用公式:V=πr^2h÷3来求圆锥的体积。

  (2)已知圆锥的底面直径和高,可以直接利用公式:V=π(d÷2)^2h÷3来求圆锥的体积。

  (3)已知圆锥的底面周长和高,可以直接利用公式:V=π(C÷2÷π)^2h÷3求出圆锥的体积。

  32、利用V=Sh÷3计算圆锥的体积时不要忘记除以3或乘1/3。

  33、圆柱体积是圆锥体积的3倍或者说圆锥体积是圆柱体积的1/3,必须以“圆柱和圆锥等底等高”为前提。

  34、在以直角三角形的直角边为轴旋转而成的两个圆锥中,以较短直角边为轴旋转而成的圆锥的体积比较大。

  小学数学的重要内容

  1、分数乘除法。

  分数乘、除法属于分数的基本知识和技能,而且两者关系密切,教材将这两部分内容集中安排。教材首先通过一组题目,强调分数乘除法的关系,即分数除法是分数乘法的逆运算。同时对分数乘除法的计算方法进行了复习。

  2、百分数。

  百分数内容的复习重点放在百分数的应用,紧接在用分数乘除法解决问题后编排,这样可以使学生看到它们在结构、解题思路上的一致性,便于加强知识间的联系。

  3、空间与图形。

  这部分内容包括位置与圆的复习。

  在第一学段中,学生已经会用第几组、第几个来表示物体的位置,本学期进一步学习用数对表示物体的位置。圆的认识包括直径、半径、π、轴对称图形等概念以及圆的周长和面积、圆的画法等内容,教材重点复习了圆的周长、面积计算公式和轴对称图形。

  4、统计。

  统计的内容主要是认识扇形统计图。学生进一步体会扇形统计图的特点,即能清楚地表明各部分数量同总数之间的关系,并根据给出的信息解决一些问题,以促使学生分析信息、解决问题能力的提高。

  数学平行四边形和梯形知识点

  1、直线外一点到直线所画的垂直线段最短;这点到这条直线的垂足之间的长度叫距离。

  2、两条平行线之间的距离处处相等。

  3、两组对边分别平行的四边形叫做平行四边形;平行四边形有无数条高,平行四边形不是轴对称图形。

  4、一个平行四边形在拉动过程中,面积变化,高变化,周长不变。平行四边形具有易变性。

  5、只有一组对边平行的四边形叫梯形。

  当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。等腰梯形是轴对称图形。

  四个角都是直角的四边形叫长方形。

  四个角都是直角,并且四条边都相等的四边形叫正方形。

  6、画高:

  从平行四边形一条边上的一点到对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高。垂足所在的边叫做平行四边形的底。

  当梯形的两条腰相等时,这两腰相等的梯形叫做等腰梯形。

  特别注意:画高时,请注意;虚线、垂直标记、和名称

  六年级数学下册知识点 篇3

  (一)、折扣和成数

  1、折扣:

  用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。

  几折就是十分之几,也就是百分之几十。例如:八折=8/10=80﹪,

  六折五=6.5/10=65/100=65﹪

  解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

  商品现在打八折:现在的售价是原价的80﹪

  商品现在打六折五:现在的售价是原价的65﹪

  2、成数:

  几成就是十分之几,也就是百分之几十。例如:一成=1/10=10﹪

  八成五=8.5/10=85/100=80﹪

  解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

  这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10﹪

  今年小麦的收成是去年的八成五:今年小麦的收成是去年的85﹪

  (二)、税率和利率

  1、税率

  (1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

  (2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。

  (3)应纳税额:缴纳的税款叫做应纳税额。

  (4)税率:应纳税额与各种收入的比率叫做税率。

  (5)应纳税额的计算方法:

  应纳税额=总收入×税率

  收入额=应纳税额÷税率

  2、利率

  (1)存款分为活期、整存整取和零存整取等方法。

  (2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

  (3)本金:存入银行的钱叫做本金。

  (4)利息:取款时银行多支付的钱叫做利息。

  (5)利率:利息与本金的比值叫做利率。

  (6)利息的计算公式:

  利息=本金×利率×时间

  利率=利息÷时间÷本金×100%

  (7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:

  税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)

  税后利息=本金×利率×时间×(1-利息税率)

  购物策略:

  估计费用:根据实际的问题,选择合理的估算策略,进行估算。

  购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案

  学后反思:做事情运用策略的好处

  第三单元:圆柱和圆锥

  一、圆柱

  1、圆柱的形成:圆柱是以长方形的一边为轴旋转而得的。

  圆柱也可以由长方形卷曲而得到。

  两种方式:

  1.以长方形的长为底面周长,宽为高;

  2.以长方形的.宽为底面周长,长为高。

  其中,第一种方式得到的圆柱体体积较大。

  2、圆柱的高是两个底面之间的距离,一个圆柱有无数条高,他们的数值是相等的

  3、圆柱的特征:

  (1)底面的特征:圆柱的底面是完全相等的两个圆。

  (2)侧面的特征:圆柱的侧面是一个曲面。

  (3)高的特征:圆柱有无数条高

  4、圆柱的切割:

  ①横切:切面是圆,表面积增加2倍底面积,即S增=2πr?

  ②竖切(过直径):切面是长方形(如果h=2R,切面为正方形),该长方形的长是圆柱的高,宽是圆柱的底面直径,表面积增加两个长方形的面积,即S增=4rh

  5、圆柱的侧面展开图:

  ①沿着高展开,展开图形是长方形,如果h=2πr,则展开图形为正方形

  ②不沿着高展开,展开图形是平行四边形或不规则图形

  ③无论怎么展开都得不到梯形

  6、圆柱的相关计算公式:

  底面积:S底=πr?

  底面周长:C底=πd=2πr

  侧面积:S侧=2πrh

  表面积:S表=2S底+S侧=2πr?+2πrh

  体积:V柱=πr?h

  考试常见题型:

  ①已知圆柱的底面积和高,求圆柱的侧面积,表面积,体积,底面周长

  ②已知圆柱的底面周长和高,求圆柱的侧面积,表面积,体积,底面积

  ③已知圆柱的底面周长和体积,求圆柱的侧面积,表面积,高,底面积

  ④已知圆柱的底面面积和高,求圆柱的侧面积,表面积,体积

  ⑤已知圆柱的侧面积和高,求圆柱的底面半径,表面积,体积,底面积

  以上几种常见题型的解题方法,通常是求出圆柱的底面半径和高,再根据圆柱的相关计算公式进行计算

  无盖水桶的表面积=侧面积+一个底面积油桶的表面积=侧面积+两个底面积

  烟囱通风管的表面积=侧面积

  只求侧面积:灯罩、排水管、漆柱、通风管、压路机、卫生纸中轴、薯片盒包装

  侧面积+一个底面积:玻璃杯、水桶、笔筒、帽子、游泳池

  侧面积+两个底面积:油桶、米桶、罐桶类

  二、圆锥

  1、圆锥的形成:圆锥是以直角三角形的一直角边为轴旋转而得到的。圆锥也可以由扇形卷曲而得到。

  2、圆锥的高是两个顶点与底面之间的距离,与圆柱不同,圆锥只有一条高。

  3、圆锥的特征:

  (1)底面的特征:圆锥的底面一个圆。

  (2)侧面的特征:圆锥的侧面是一个曲面。

  (3)高的特征:圆锥有一条高。

  4、圆锥的切割:

  ①横切:切面是圆

  ②竖切(过顶点和直径直径):切面是等腰三角形,该等腰三角形的高是圆锥的高,底是圆锥的底面直径,面积增加两个等腰三角形的面积,

  即S增=2rh

  5、圆锥的相关计算公式:

  底面积:S底=πr?

  底面周长:C底=πd=2πr

  体积:V锥=1/3πr?h

  考试常见题型:

  ①已知圆锥的底面积和高,求体积,底面周长

  ②已知圆锥的底面周长和高,求圆锥的体积,底面积

  ③已知圆锥的底面周长和体积,求圆锥的高,底面积

  以上几种常见题型的解题方法,通常是求出圆锥的底面半径和高,再根据圆柱的相关计算公式进行计算

  三、圆柱和圆锥的关系

  1、圆柱与圆锥等底等高,圆柱的体积是圆锥的3倍。

  2、圆柱与圆锥等底等体积,圆锥的高是圆柱的3倍。

  3、圆柱与圆锥等高等体积,圆锥的底面积(注意:是底面积而不是底面半径)是圆柱的3倍。

  4、圆柱与圆锥等底等高,体积相差2/3Sh

  题型总结

  ①直接利用公式:分析清楚求的的是表面积,侧面积、底面积、体积

  分析清楚半径变化导致底面周长、侧面积、底面积、体积的变化

  分析清楚两个圆柱(或两个圆锥)半径、底面积、底面周长、侧面积、表面积、体积之比

  ②圆柱与圆锥关系的转换:包括削成最大体积的问题(正方体,长方体与圆柱圆锥之间)

  ③横截面的问题

  ④浸水体积问题:(水面上升部分的体积就是浸入水中物品的体积,等于盛水容积的底面积乘以上升的高度)容积是圆柱或长方体,正方体

  ⑤等体积转换问题:一个圆柱融化后做成圆锥,或圆柱中的溶液倒入圆锥,都是体积不变的问题,注意不要乘以1/3

  第四单元:比例

  1、比的意义(1)两个数相除又叫做两个数的比

  (2)“:”是比号,读作“比”。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。

  (3)同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。

  (4)比值通常用分数表示,也可以用小数表示,有时也可能是整数。

  (5)比的后项不能是零。

  (6)根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。

  2、比的基本性质:比的前项和后项同时乘或者除以相同的数(0除外),比值不变,这叫做比的基本性质。

  3、求比值和化简比:

  求比值的方法:用比的前项除以后项,它的结果是一个数值可以是整数,也可以是小数或分数。

  根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。

  4、按比例分配:

  在农业生产和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。

  方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。

  5、比例的意义:表示两个比相等的式子叫做比例。

  组成比例的四个数,叫做比例的项。

  两端的两项叫做外项,中间的两项叫做内项。

  6、比例的基本性质:在比例里,两个外项的积等于两个两个内项的积。这叫做比例的基本性质。

  7、比和比例的区别

  (1)比表示两个量相除的关系,它有两项(即前、后项);比例表示两个比相等的式子,它有四项(即两个内项和两个外项)。

  (2)比有基本性质,它是化简比的依据;比例也有基本性质,它是解比例的依据。

  8、成正比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。

  用字母表示x/y=k(一定)

  9、成反比例的量:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。

  用字母表示x×y=k(一定)

  10、判断两种量成正比例还是成反比例的方法:

  关键是看这两个相关联的量中相对就的两个数的商一定还是积一定,如果商一定,就成正比例;如果积一定,就成反比例。

  11、比例尺:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

  12、比例尺的分类

  (1)数值比例尺和线段比例尺(2)缩小比例尺和放大比例尺

  13、图上距离:

  图上距离/实际距离=比例尺

  实际距离×比例尺=图上距离

  图上距离÷比例尺=实际距离

  14、应用比例尺画图的步骤:

  (1)写出图的名称、

  (2)确定比例尺;

  (3)根据比例尺求出图上距离;

  (4)画图(画出单位长度)

  (5)标出实际距离,写清地点名称

  (6)标出比例尺

  15、图形的放大与缩小:形状相同,大小不同。

  16、用比例解决问题:

  根据问题中的不变量找出两种相关联的量,并正确判断这两种相关联的量成什么比例关系,并根据正、反比例关系式列出相应的方程并求解。

  17、常见的数量关系式:(成正比例或成反比例)

  单价×数量=总价

  单产量×数量=总产量

  速度×时间=路程

  工效×工作时间=工作总量

  18、

  已知图上距离和实际距离可以求比例尺。

  已知比例尺和图上距离可以求实际距离。

  已知比例尺和实际距离可以求图上距离。

  计算时图距和实距单位必须统一。

  19、播种的总公顷数一定,每天播种的公顷数和要用的天数是不是成反比例?

  答:每天播种的公顷数×天数=播种的总公顷数

  已知播种的总公顷数一定,就是每天播种的公顷数和要用的天数的积是一定的,所以每天播种的公顷数和要用的天数成反比例。

  第五单元:数学广角-鸽巢问题

  1、鸽巣原理是一个重要而又基本的组合原理,在解决数学问题时有非常重要的作用

  ①什么是鸽巣原理,先从一个简单的例子入手,把3个苹果放在2个盒子里,共有四种不同的放法,如下表

  放法盒子1盒子2

  1 3 0

  2 2 1

  3 1 2

  4 0 3

  无论哪一种放法,都可以说“必有一个盒子放了两个或两个以上的苹果”。这个结论是在“任意放法”的情况下,得出的一个“必然结果”。

  类似的,如果有5只鸽子飞进四个鸽笼里,那么一定有一个鸽笼飞进了2只或2只以上的鸽子

  如果有6封信,任意投入5个信箱里,那么一定有一个信箱至少有2封信

  我们把这些例子中的“苹果”、“鸽子”、“信”看作一种物体,把“盒子”、“鸽笼”、“信箱”看作鸽巣,可以得到鸽巣原理最简单的表达形式

  ②利用公式进行解题:

  物体个数÷鸽巣个数=商……余数

  至少个数=商+1

  2、摸2个同色球计算方法。

  ①要保证摸出两个同色的球,摸出的球的数量至少要比颜色数多1。

  物体数=颜色数×(至少数-1)+1

  ②极端思想:用最不利的摸法先摸出两个不同颜色的球,再无论摸出一个什么颜色的球,都能保证一定有两个球是同色的。

  ③公式:

  两种颜色:2+1=3(个)

  三种颜色:3+1=4(个)

  四种颜色:4+1=5(个)

  第六单元:整理和复习

  1、数与代数:

  比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识;

  能比较熟练地进行整数、小数、分数的四则运算;

  能进行整数、小数加、减、乘、除的估算;

  会使用学过的简便算法,合理、灵活地进行计算;

  会解学过的方程;

  养成检查和验算的习惯。

  巩固常用计量单位的表象,掌握所学单位间的进率,能够进行简单的改写。

  2、空间与图形:

  掌握所学几何形体的特征;

  能够比较熟练地计算一些几何形体的周长、面积和体积,并能应用;

  巩固所学的简单的画图、测量等技能;

  巩固轴对称图形的认识,会画一个图形的对称轴,巩固图形的平移、旋转的认识;

  能用数对或根据方向和距离确定物体的位置,掌握有关比例尺的知识,并能应用。

  3、统计与可能性:

  掌握所学的统计初步知识;

  能够看和绘制简单的统计图表;

  能够根据数据做出简单的判断与预测;

  会求一些简单事件的可能性;

  能够解决一些计算平均数的实际问题。

  4、综合应用:

  进一步感受数学知识间的相互联系,体会数学的作用;

  掌握所学的常见数量关系和解决问题的思考方法,能够比较灵活地运用所学知识解决生活中一些简单的实际问题。

【六年级数学下册知识点】相关文章:

浙教版数学六年级下册知识点11-16

数学六年级下册单元知识点11-16

高等数学下册知识点07-30

六年级下册数学知识点01-26

六年级下册数学比例知识点11-16

六年级下册数学知识点梳理01-28

六年级下册数学知识点最新12-08

数学六年级下册单元知识点7篇12-01

苏教版六年级下册数学知识点11-17

沪教版数学六年级下册知识点11-16