北师大版小学数学六年级上册第一单元知识点归纳
在平平淡淡的学习中,大家最熟悉的就是知识点吧?知识点有时候特指教科书上或考试的知识。你知道哪些知识点是真正对我们有帮助的吗?下面是小编收集整理的小学数学六年级上册第一单元知识点归纳,供大家参考借鉴,希望可以帮助到有需要的朋友。
北师大版小学数学六年级上册第一单元知识点归纳1
1.圆的定义:平面上的一种曲线图形。
2.将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。圆心一般用字母O表示。它到圆上任意一点的距离都相等.
3.半径:连接圆心到圆上任意一点的线段叫做半径。半径一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。
4.圆心确定圆的位置,半径确定圆的大小。
5.直径:通过圆心并且两端都在圆上的线段叫做直径。直径一般用字母d表示。
6.在同一个圆内,所有的半径都相等,所有的直径都相等。
7.在同一个圆内,有无数条半径,有无数条直径。
8.在同一个圆内,直径的长度是半径的2倍,半径的长度是直径的一半。
用字母表示为:d=2rr=d
用文字表示为:半径=直径÷2直径=半径×2
9.圆的周长:围成圆的曲线的长度叫做圆的周长。
10.圆的周长总是直径的3倍多一些,这个比值是一个固定的数。我们把圆的周长和直径的比值叫做圆周率,用字母表示。圆周率是一个无限不循环小数。在计算时,取3.14。世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
11.圆的周长公式:C=d或C=2r
圆周长=×直径圆周长=×半径×2
12、圆的面积:圆所占面积的大小叫圆的面积。
13.把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,用字母(r)表示,宽相当于圆的半径,用字母(r)表示,因为长方形的面积=长×宽,所以圆的面积=r×r。圆的面积公式:S=r2。
14.圆的面积公式:S=r2 或者S=(d2)2或者S=(C2)2
15.在一个正方形里画一个最大的圆,圆的直径等于正方形的边长。
16.在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。
17.一个环形,外圆的半径是R,内圆的半径是r,它的面积是S=R2-r2 或 S=(R2-r2)。
(其中R=r+环的宽度.)
19.半圆的周长等于圆的周长的一半加直径。半圆的周长与圆周长的一半的区别在于,半圆有直径,而圆周长的一半没有直径。
半圆的周长公式:C=d2+d 或 C=r+2r
圆周长的一半=r
20.半圆面积=圆的面积2 公式为:S=r22
21.在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。
例如:在同一个圆里,半径扩大4倍,那么直径和周长就都扩大4倍,而面积扩大16倍。
22.两个圆的半径比等于直径比等于周长比,而面积比等于以上比的平方。
例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9。
圆周长和直径的比是:1,比值是
圆周长和半径的比是2:1,比值是2
23.当一个圆的半径增加a厘米时,它的周长就增加2a厘米;
当一个圆的直径增加a厘米时,它的周长就增加a厘米。
24.在同一圆中,圆心角占圆周角的几分之几,它所在扇形面积就占圆面积的几分之几;所对的弧就占圆周长的几分之几.
25.当长方形,正方形,圆的周长相等时,圆的面积最大,长方形的面积最小
26.扇形弧长公式:扇形的面积公式: S=r2(n为扇形的圆心角度数,r为扇形所在圆的半径)
27.轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。
28.有一条对称轴的图形有:角、等腰三角形、等腰梯形、扇形、半圆。
有2条对称轴的图形是:长方形
有3条对称轴的图形是:等边三角形
有4条对称轴的图形是:正方形
有无数条对称轴的图形是:圆、圆环。
29.直径所在的直线是圆的对称轴。
北师大版小学数学六年级上册第一单元知识点归纳2
(一)分数乘法意义:
1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。
“分数乘整数”指的是第二个因数必须是整数,不能是分数。
2、一个数乘分数的意义就是求一个数的几分之几是多少。
“一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)
(二)分数乘法计算法则:
1、分数乘整数的运算法则是:分子与整数相乘,分母不变。
(1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。
2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)
(1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。
(2)分数化简的方法是:分子、分母同时除以它们的最大公因数。
(3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。
(4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。
(三)积与因数的关系:
一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。
一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c<a(b≠0)。
一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a 。
在进行因数与积的大小比较时,要注意因数为0时的特殊情况。
(四)分数乘法混合运算
1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的。
2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。
乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)倒数的意义:乘积为1的两个数互为倒数。
1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)
2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。
3、求倒数的方法:
①求分数的倒数:交换分子、分母的位置。
②求整数的倒数:整数分之1。
③求带分数的倒数:先化成假分数,再求倒数。
④求小数的倒数:先化成分数再求倒数。
4、1的倒数是它本身,因为1×1=1
0没有倒数,因为任何数乘0积都是0,且0不能作分母。
5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1。带分数的倒数小于1。
(六)分数乘法应用题——用分数乘法解决问题
1、求一个数的几分之几是多少?(用乘法)
已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。
2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。
3、什么是速度?
速度是单位时间内行驶的路程。
速度=路程÷时间 时间=路程÷速度 路程=速度×时间
单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。
4、求甲比乙多(少)几分之几?
多:(甲-乙)÷乙 少:(乙-甲)÷乙
北师大版小学数学六年级上册第一单元知识点归纳3
一、圆的特征
1、圆是平面内封闭曲线围成的平面图形。
2、圆的特征:外形美观,易滚动。
3、圆心O:圆中心的点叫做圆心,圆心一般用字母O表示。
圆多次对折之后,折痕的相交于圆的中心即圆心。圆心确定圆的位置。
半径r:连接圆心到圆上任意一点的线段叫做半径。在同一个圆里,有无数条半径,且所有的半径都相等。半径确定圆的大小。
直径d:通过圆心且两端都在圆上的线段叫做直径。在同一个圆里,有无数条直径,且所有的直径都相等。直径是圆内最长的线段。
同圆或等圆内直径是半径的2倍:d=2r或r=d÷2
4、等圆:半径相等的圆叫做同心圆,等圆通过平移可以完全重合。同心圆:圆心重合、半径不等的两个圆叫做同心圆。
5、圆是轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。折痕所在的直线叫做对称轴。
有一条对称轴的图形:半圆、扇形、等腰梯形、等腰三角形、角。
有二条对称轴的图形:长方形
有三条对称轴的图形:等边三角形
有四条对称轴的图形:正方形
有无条对称轴的图形:圆,圆环
6、画圆
(1)圆规两脚间的距离是圆的半径。
(2)画圆步骤:定半径、定圆心、旋转一周。
二、圆的周长:
围成圆的曲线的长度叫做圆的周长,周长用字母C表示。
1、圆的周长总是直径的三倍多一些。
2、圆周率:圆的周长与直径的比值是一个固定值,叫做圆周率,用字母π表示。
即:圆周率π =周长÷直径≈3.14。
所以,圆的周长(c)=直径(d)×圆周率(π)—周长公式:c=πd, c=2πr。
圆周率π是一个无限不循环小数,3.14是近似值。
3、周长的变化的规律:半径扩大多少倍直径也扩大多少倍,周长扩大的倍数与半径、直径扩大的倍数相同。
4、半圆周长=圆周长一半+直径= πr+d
三、圆的面积s
1、圆面积公式的推导
如图把一个圆沿直径等分成若干份,剪开拼成长方形,份数越多拼成的图像越接近长方形。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
长方形面积=长×宽
所以,圆的面积=圆的周长的一半(πr)×圆的半径(r)。
S圆=πr×r=πr2
2、几种图形,在面积相等的情况下,圆的周长最短,而长方形的周长最长;反之,在周长相等的'情况下,圆的面积则最大,而长方形的面积则最小。
周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。
3、圆面积的变化的规律:半径扩大多少倍,直径、周长也同时扩大多少倍,圆面积扩大的倍数是半径、直径扩大的倍数的平方倍。
4、环形面积=大圆–小圆=πR2-πr2
扇形面积=πr2×n÷360(n表示扇形圆心角的度数)
5、跑道:每条跑道的周长等于两半圆跑道合成的圆的周长加上两条直跑道的和。因为两条直跑道长度相等,所以,起跑线不同,相邻两条跑道起跑线也不同,间隔的距离是:2×π×跑道宽度。
一个圆的半径增加a厘米,周长就增加2πa厘米。
一个圆的直径增加b厘米,周长就增加πb厘米。
6、任意一个正方形的内切圆即最大圆的直径是正方形的边长,它们的面积比是4∶π。
7、常用数据
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
小学数学比和比例知识点
1、比的基本性质:比的前项和后项都乘以或除以一个不为零的数。比值不变。
比的性质用于化简比。
比表示两个数相除;只有两个项:比的前项和后项。
2、比和比例的区别
(1)意义、项数、各部分名称不同。比表示两个数相除;只有两个项:比的前项和后项。如:a:b这是比。比例是一个等式,表示两个比相等;有四个项:两个外项和两个内项。a:b=3:4这是比例。
(2)比的基本性质和比例的基本性质意义不同、应用不同。
比的性质:比的前项和后项都乘或除以一个不为零的数。比值不变。
比例的性质:在比例里,两个外项的乘积等于两个内项的乘积相等。比例的性质用于解比例。联系:比例是由两个相等的比组成。
数学分数的基本性质
分数的分子和分母都乘或除以相同的数(0除外),分数的大小不变。
联系分数与除法的关系以及“商不变”的规律,来理解分数的基本性质。
分子相当于被除数,分母相当于除数,被除数和除数同时乘或除以相同的数(0除外),商不变。因此分数的分子和分母都乘或除以相同的数(0除外),分数的大小也是不变的。
运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数。
北师大版小学数学六年级上册第一单元知识点归纳4
分数除法是分数乘法的逆运算。
1.意义:与整数除法的意义相同,都是已知两个因数的积与其中一个因数求另一个因数。
2.计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
3.应用题:已知一个数的几分之几是多少,求这个数用除法计算。
小技巧:
(1)先找单位1。单位1已知,求部分量或对应分率用乘法,求单位1用除法。
(2)在解答分数除法应用题时要找准单位“1”的量,而简单的分数除法应用题就是要求单位“1”的量。
(3)分数除法应用题的数量关系式是:
单位“1”×分率=分率对应的量
在具体解答时,用方程做,设单位“1”的量为ⅹ。
(4)解答分数除法应用题时,可以借助于线段图来分析数量关系。在画线段图时,先画单位“1”的量。
可以发现:当应用题中单位“1”已经知道时,就用乘法解;当单位“1”不知道,要求单位“1”时,要用除法解或列方程解。
北师大版小学数学六年级上册第一单元知识点归纳5
1.圆的概念:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
2.圆的组成:圆心:圆任意两条对称轴的交点为圆心。注:圆心一般符号O表示。直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴。在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一,d=2r或r=d/2。
注:圆的半径或直径决定圆的大小,圆心决定圆的位置。
3.圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
4.圆周率:圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。
5.圆的面积公式:圆所占平面的大小叫做圆的面积。用字母S表示。
6.周长计算公式
(1)已知直径:C=πd=2πr
(2)半圆的周长:1/2周长+直径
7.面积计算公式:
(1)已知半径:S=πr2
(2)已知直径:S=π(d/2)2
(3)已知周长:S=π[c÷(2π)]2
北师大版小学数学六年级上册第一单元知识点归纳6
一、负数:
1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3、能借助数轴初步学会比较正数、0和负数之间的大小。
二、圆柱和圆锥
1、认识圆柱和圆锥,掌握它们的基本特征。认识圆柱的底面、侧面和高。认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
三、比例
1、理解比例的意义和基本性质,会解比例。
2、理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育
四、统计
1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。
2、能根据统计图提供的信息,做出正确的判断或简单预测。
北师大版小学数学六年级上册第一单元知识点归纳7
1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
连比如:3:4:5读作:3比4比5
2、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20,读作:12比20
区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
3、比的基本性质:比的前项和后项同时乘以或除以相同的数(0除外),比值不变。
4、化简比:化简之后结果还是一个比,不是一个数。
(1)用比的前项和后项同时除以它们的最大公约数。
(2)两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。也可以求出比值再写成比的形式。
(3)两个小数的比,向右移动小数点的位置,也是先化成整数比。
5、求比值:把比号写成除号再计算,结果是一个数(或分数),相当于商,不是比。
【北师大版小学数学六年级上册第一单元知识点归纳】相关文章:
北师大版数学六年级第一单元的知识点归纳02-29
北师大小学数学单元知识点归纳11-06
北师大版小学数学六年级上册知识点归纳10-12
北师大版小学数学六年级上册第一单元知识点01-19
六年级数学上册第一单元知识点归纳12-01
北师大版历史初三上册第一单元知识点08-26
北师大版数学六年级上册第二单元知识点12-22
北师大版小学数学六年级上册知识点01-19
六年级数学上册人教版第一单元知识点归纳02-28