数学 百文网手机站

小学数学四年级下册知识点

时间:2023-02-06 11:48:04 数学 我要投稿

小学数学四年级下册知识点汇总

  在平凡的学习生活中,是不是经常追着老师要知识点?知识点是指某个模块知识的重点、核心内容、关键部分。你知道哪些知识点是真正对我们有帮助的吗?以下是小编为大家收集的小学数学四年级下册知识点汇总,仅供参考,欢迎大家阅读。

小学数学四年级下册知识点汇总

  1.小数加、减法应注意:

  (1)小数点要对齐,也就是相同的数位要对齐;

  (2)从最低位算起;

  (3)得数小数部分末尾有0,一般要把0去掉。

  2.在小数减法中,如果被减数是整数,一般要补齐小数部分,补几位,看减数。例如:20-1.86,列竖式时应写成:20.00-1.86

  3.整数的运算定律在小数运算中同样适用。

  4.关于解决小数中人民币的问题,如没有特殊要求,一般保留两位小数。

  5.条形统计图很容易看出数量的多少,折线统计图不但可以看出数量的多少,而且能清楚地表示出数量的增减变化。

  6.在折线统计图中,所画的线段越接近垂直(或线段越长)说明上升(或下降)的越快;所画的线段越接近水平(或线段越短),说明变化得越小。

  如果观察不出折线统计图的趋势来,只好计算后再作比较。

  7.折线统计图的特点:能反映变化趋势。

  第八单元知识点

  1.两端都栽时,棵树总比间隔数多一

  全长÷每段长+1=棵树

  (棵树-1)×每段长=全长

  全长÷(棵树-1)=每段长

  2.两端都不栽时,棵树总比间隔数少一

  全长÷每段长-1=棵树

  全长÷(棵树+1)=每段长

  (棵树+1)×每段长=全长

  3.在封闭图形上植树时,棵树等于间隔数

  全长÷每段长=棵树

  棵树×每段长=全长

  全长÷棵树=每段长

  在一端植树与在封闭图形上植树相似。

  4.关于植树问题给孩子们的建议:

  (1)认真读题,认清这是哪一种植树问题。

  (2)学会把一些数学问题转化为植树问题。例如:剪绳子、锯木头、俩建筑物之间栽树都是两端都不栽时的情况;走楼梯、时钟报时、车站的站点是两端都栽时的情况。

  (3)然后分清已知条件和问题,套公式。(当然理解是基础)

  (4)注意隐藏的已知条件,例如:公路的两侧、方阵……

  (5)无论是哪一种植树问题,平均分成的份数就是所谓的间隔数。

  (6)植树问题的关键是高清各种植树问题中棵数与间隔数的关系。

  (7)遇到自己解决不了的植树问题,或是犯糊涂时,借助画图,有时候画图是一种很好的策略。

  5.关于120页例3这类题,知道最外层每边上的个数,(这个图形一定是正三角形,正方形,正五边形,正六边形……)求最外层的总数量,策略有三

  (1)模拟两边都栽:每边上的个数×边数-角的个数

  (2)模拟两边都不栽:(每边上的个数-2)×边数+角的个数

  (3)模拟一边栽一边不栽:(每边上的个数-1)×边数

  本道题认真看看棋盘图,帮助我们理解掌握。

  如果是在长方形上摆,就模拟120页第2副图,上下两边摆,左右两边不摆。

  6.关于121页做一做第1题,知道最外层的总数量,(这个图形一定是正三角形、正方形、正五边形、正六边形……),求每条边上的个数,策略有三

  (1)模拟一边栽一边不栽:最外层的总数量÷边数+1

  (2)模拟两边都栽:(最外层的总数量+角的个数)÷边数

  (3)模拟两边都不栽:(最外层的总数量-角的个数)÷边数+2

  第一单元小数的意义和加减法

  1、小数的意义:

  把单位“1”平均分成10份、100份、1000份……取其中的1份或几份,表示十分之几、百分之几、千份之几……的数,叫小数。

  2、分母是10、100、1000……的分数可以用小数表示

  表示十分之几的小数是一位小数

  表示百分之几的小数是两位小数

  表示千分之几的小数是三位小数……

  3、小数的组成:

  以小数点为界,小数由整数部分和小数部分组成。

  4、小数的数位、计算单位、进率:

  ① 小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……与整数一样,小数每相邻两个计数单位之间的进率是10。

  ② 小数部分最大的计算单位是十分之一,小数部分没有最小的计数单位。

  ③ 小数的数位是无限的。

  ④ 在一个小数中,小数点后面含有几个小数数位,它就是几位小数。小数部分末尾的零也要计入其中。

  5、小数的数位顺序表

  xx

  6、小数的读写:

  读小数时,从左往右,整数部分按照整数的读法来读(整数部分是0的读作“零”),小数点读作“点”,小数部分顺次读出每一个数位上的数字,即使是连续的0,也要依次读出来。

  写小数时,也是从左往右,整数部分按照整数的写法来写(整数部分是零的写作“0”),小数点点在个位的右下角,小数部分顺次写出每一个数位上的数字。

  7、理解0.1与0.10的区别联系:

  区别:0.1表示1个0.1、0.10表示10个0.01、意义不同。

  联系:0.1=0.10两个数大小相等。运用小数的基本性质可以不改变数的大小,改写小数或化简小数。

  8、纯小数和带小数

  整数部分是0的小数叫做纯小数;

  整数部分不为0的小数叫做带小数。

  9、测量活动(名数的改写)

  ① 1分米=0.1米 1厘米=0.01米 1克=0.001千克……学会低级单位与高级单位之间的互化(长度单位,面积单位,重量单位……)。

  低级单位单名数化为高级单位时,先将这个低级单位的数改写成分母是10、100、1000……的分数,再把分数写成小数的形式,并在后面加上所要化成的高级单位的名称。

  ② 复名数改单名数:抄相同,改不同。(相同的单位抄在整数部分,不相同的单位按照上面的改写方法写在小数部分)。

  ③ 其他改写方法:

  单名数互化:

  a.低级单位名数÷进率=高级单位名数。

  b.高级单位名数进率=低级单位名数。

  复名数与单名数之间互化:

  抄相同,改不同(同单名数互化方法)。

  如:3米2厘米=( )米。相同的单位米,抄在整数部分,整数部分是3;改写不同:2厘米÷100=0.02米(厘米与米之间的进率是100)

  10、比大小(比较小数的大小)

  ① 比较两个小数大小的方法:先看整数部分,整数部分大的小数就大;整数部分相同,再看小数部分的十分位,十分位上数字大的小数就大……

  ② 把几个小数按顺序排列:要先比较它们的大小。再按照题目的要求按顺序排列。当单位不统一的几个数量比较大小时,要先将这几个数量的单位统一,再按小数大小比较方法进行比较,最后答题应按照最目中给的原数进行排列顺序。

  11、小数加、减法的意义:

  小数加减法的意义与整数加减法的意义相同。

  ①小数加法的意义:把两个数合并成一个数的运算。

  ②小数减法的意义:已知两个加数的和与其中的一个加数,求另一个加数的运算。

  12、小数的基本性质:

  小数末尾添上“0”或去掉“0”,小数的大小不变。

  13、小数加减计算法则:

  小数点对齐;按照整数加减法的法则计算。从末位算起;哪一位上的数相加满十,要向前一位进一。如果被减数的小数末尾位数不够,可以添“0”再减,哪一位上的数不够减,要从前一位退一,在本位上加十再减;得数的小数点要对齐横线上的小数点。

  14、小数加减混合运算

  ①和整数加减混合运算的顺序相同。同级运算,从左往右;有括号的,先里后外。

  ② 整数加、减法的运算定律同样适用于小数加减法。例如加法的结合律,交换律。

  15、小数的加减法要注意:

  小数点要对齐,也就是将数位要对齐,得数的末尾有“0”,一定要把“0”去掉。

  第二单元认识三角形和四边形

  1、按照不同的标准给已知图形进行分类

  ①按平面图形和立体图形分;

  ②按平面图形是否由线段围成来分的;

  ③按图形的边数来分。

  2、平行四边形和三角形的性质:

  三角形具有稳定性,平行四边形具有易变形(不稳定性)的特点。

  3、把三角形按照不同的标准分类,并说明分类依据;

  ①按角分,分为:直角三角形、锐角三角形、钝角三角形

  其本质特征:

  三个角都是锐角的三角形是锐角三角形;

  有一个角是直角的三角形是直角三角形;

  有一个角是钝角的三角形是钝角三角形。

  ②按边分,分为:等腰三角形、等边三角形、任意三角形。

  有两条边相等的三角形是等腰三角形;

  三条边都相等的三角形是等边三角形。(等边三角形是特殊的等腰三角形)

  4、三角形内角和、三角形边的关系

  ① 任意一个三角形内角和等于180度。

  ② 三角形任意两边之和大于第三边。已知两条边的长度,那么第三边的长度要大于已知两边之差小于两边只差。

  ③ 能应用三角形内角和的性质和三角形边的关系解决一些简单的问题。

  ④ 四边形的内角和是360°

  ⑤ 用2个相同的三角形可以拼成一个平行四边形。

  ⑥ 用2个相同的直角三角形可以拼成一个平行四边形、一个长方形、一个大三角形。

  ⑦ 用2个相同的等腰的直角的三角形可以拼成一个平行四边形、一个正方形。一个大的等腰的直角的三角形。

  5、四边形的分类

  ① 由四条线段围成的封闭图形叫作四边形。四边形中有两组对边分别平行的四边形是平行四边形,只由一组对边平行的四边形是梯形。

  ② 长方形、正方形是特殊的平行四边形。正方形是特殊的长方形。

  ③ 正方形、长方形、等腰梯形、菱形、等腰三角形、等边三角形、圆形是轴对称图形。

  a 正方形有4条对称轴。

  b长方形有2条对称轴。菱形有2条对称轴。

  c 等腰梯形有1条对称轴。

  d 等边三角形有3条对称轴。

  e 圆有无数条对称轴。

  第三单元小数乘法

  1、小数乘法的意义:

  ① 小数乘小数的意义表示求一个数的十分之几、百分之几……是多少。

  ② 小数乘整数的意义与整数乘法的意义相同。可以说是求几个相同加数和的简便运算,也可以说是求这个小数的整数倍是多少。

  如:2.3×5表示求5个2.3的和是多少。也可以表示求2.3的5倍是多少。

  2、乘法的变化规律:

  ① 在乘法里,一个因数不变,另外一个因数扩大(或缩小)a倍,积也扩大(或缩小)a倍。

  ② 在乘法里,一个因数扩大a 倍,另外一个因数扩大b倍,积就扩大a×b倍。

  ③ 在乘法里,一个因数缩小a 倍,另外一个因数缩小b倍,积就缩小a×b倍。

  3、积不变规律:

  在乘法里,一个因数扩大a 倍,另外一个因数缩小a倍,积不变。

  4、小数乘整数计算方法:

  ① 先把小数扩大成整数

  ② 按整数乘法乘法法则计算出积

  ③ 看被乘数有几位小数,就从积的右边起数出几位点上小数点。

  ④ 若积的末尾有0可以去掉

  5、小数乘小数的计算方法:

  ① 先把小数扩大成整数

  ② 按整数乘法乘法法则计算出积

  ③ 看积中有几位小数就从积的右边起数出几位,点上小数点。如果乘得的积的位数不够,要在前面用0补足。

  6、小数四则混合运算

  小数四则混合运算的运算顺序与整数四则混合运算的顺序相同:同级运算,从左往右;两级运算,先乘除后加减;有括号的,先算括号里的。

  乘法的交换律、结合律、分配律同样适用于小数乘法,应用这些运算定律,可以使计算简便。

  乘法交换律a×b=b×a

  乘法结合律(a×b)×c=a×(b×c)

  乘法分配律a×(b+c)=a×b+a×c

  a×(b—c)=a×b — a×c

  7、积的近似数:

  保留a位小数,就看第a+1位,再用四舍五入的方法取值。

  保留整数:表示精确到个位,看十分位上的数;保留一位小数:表示精确到十分位,看百分位上的数;保留两位小数:表示精确到百分位,看千分位上的数;……

  按实际需要用“四舍五入法”保留一定的小数位数,求积的近似值。

  8、小数点位置移动引起小数大小变化的规律

  ① 小数点位置移动引起小数大小变化的规律:

  小数点向左移动一位、两位、三位……这个数就缩小到原来的1/10 、1/100 、 1/1000……小数点向右移动一位、两位、三位……这个数就扩大到原来的10倍、100倍、1000倍……

  ② 小数点右移,位数不够时,要添“0”补位,小数点移动完后,整数最高位前边的“0”要去掉;

  小数点左移,位数不够时,也用“0”补足,点上小数点,若整数部分没有数,用“0”表示,若小数末尾有0,根据小数的性质,应把末尾的“0”去掉。

  ③ 积的小数位数与乘数的小数位数的关系:在小数乘法中,两个乘数一共有几位小数,积就有几位小数。

  ④ 积的近似值的求法:一般要先算了正确的积,再根据题目要求或生活习惯用“四舍五入”

  ⑤ 比较大小:

  ① 一个数乘以一个大于1的数,积大于它本身。例如:6.5×1.5>6.5

  ② 一个数乘以一个等于1的数,积等于它本身。例如:6.5×1=6.5

  ③ 一个数乘以一个小于1的数,积小于它本身。例如:6.5×0.9<6.5

  第四单元观察物体

  1、从不同位置观察同一个物体,所看到的图形有可能一样,也有可能不一样。

  2、从同一个位置观察不同的物体,所看到的图形有可能一样,也有可能不一样。

  3、不同形状的物体,分别从正面、侧面、上面看,看到的形状有可能是相同的,也有可能是不同的。

  4、方法指导:在不同位置观察由小正方体平摆的物体,并判断观察到物体的平面图,在哪一位置观察,就从哪一面数出小正方形的数量并确定摆出的形状,注意视线应垂直于所要观察的平面。

  第五单元认识方程

  1、数量关系:

  用字母或者含有字母的式子都可以表示数量,也可以表示数量关系。

  2、用字母表示有关图形的计算公式:

  ①长方形周长公式:C=2(a+b)

  ②长方形面积公式:S=ab

  ③正方形周长公式:C=4a

  ④正方形面积公式:S=a

  3、用字母表示运算定律:

  如果用a、b、c分别表示三个数,那么

  ①加法交换律a+b=b+a

  ②加法结合律(a+b)+c=a+(b+c)

  ③乘法交换律a×b=b×a

  ④乘法结合律(a×b)×c=a×(b×c)

  ⑤乘法分配律 (a+b) × c=a×c+b×c

  (a-b)×c=a×c-b×c

  ⑥减法的运算性质a-b-c=a-(b+c)

  ⑦除法的运算性质a÷b÷c=a÷(b×c)

  4、数字与字母乘积的表示法:

  在含有字母的式子中,字母和字母之间、字母和数字之间的乘号可以用“”表示或省略不写,数字一般都写在字母前面。数字1与字母相乘时,1省略不写,字母按顺序写。

  如:a×b=ab、5×a=5a、1×a=a、a×a=a

  5、区别a和2a的区别:

  2a=2×aa=a×a

  6、方程的含义:

  含有未知数的等式叫方程。

  7、方程与等式的联系区别:

  方程是等式,但等式却不都是方程。

  8、等式性质一:

  等式两边都加上(或减去)同一个数,等式仍然成立。

  9、等式性质二:

  等式两边都乘一个数(或除以一个不为0的数),等式仍然成立。

  10、解方程的书写格式:

  解方程前要先写一个“解”字和冒号;一步一脱式,每算一步,等号都要上、下对齐;表示未知数的字母一般都要放在等号的左侧。

  11、解方程和方程的解

  使方程左右两边相等的未知数的值叫作方程的解。求方程的解的过程叫作解方程。

  12、看图列方程

  关键是看懂图意,从中找出等量关系,然后再根据等量关系列出方程。在列方程时,把未知数尽量放在等式左边。

  13、用方程解决实际问题(解应用题)

  首先要用字母表示未知数,然后根据题目中数量之间的相等关系,列出一个含有未知数的等式(也就是方程)再解出来,最后检验,写出答语。

  14、图形中的规律

  ①摆n个三角形需要2n+1根小棒。

  ②摆n个正方形需要3n+1根小棒。

  第六单元数据的表示和分析

  1、条形统计图:

  横向:用直条的长短表示,竖向表示类别,横向表示数量;

  纵向:用直条的高矮表示,横向表示类别,竖向表示数量。

  不同的统计图中1格表示的单位量是不同的,要结合具体的情况来判断1格表示几个单位。数据大,每1格所表示的单位量就多,数据小,每1格所表示的单位量就小。

  条形统计图的特点:直观、方便、便于察看数量多少。

  2、制作条形统计图的方法:

  确定水平方向,标出项目;确定垂直方向代表的数量(1格代表的数量);根据数据的大小画出长度不同的直条;写出标题。

  3、折线统计图的特点:

  能获取数据变化情况的信息,并进行简单的预测。

  4、折线统计图的方法:

  在方格纸中,根据所给出的数据把点标出来,再用线将点连接起来,要顺次连接。

  5、条形统计图与折线统计图的不同:

  条形统计图用直条表示数量的多少,折线统计图用折线表示数量的增减变化情况。

  6、平均数是一组数据平均水平的代表。

  平均数=总数量÷数量个数

  总数量=平均数×数量个数

  数量个数=总数量÷平均数

  7

  本册补充知识点常用数量关系

  1、平均数关系式:

  总数÷总份数=平均数

  2、总数、份数、每份数关系式:

  每份数×份数=总数

  总数÷每份数=份数

  总数÷份数=每份数

  3、行程关系式:

  速度×时间=路程

  路程÷速度=时间

  路程÷时间=速度

  4、购物问题关系式:

  单价×数量=总价

  总价÷单价=数量

  总价÷数量=单价

  5、工程问题关系式:

  工作效率×工作时间=工作量

  工作量÷工作效率=工作时间

  工作量÷工作时间=工作效率

  6、相遇问题关系式:

  速度和×相遇时间=相遇路程

  相遇路程÷速度和=相遇时间

  相遇路程÷相遇时间=速度和

  7、加法关系式:

  加数+加数=和

  和-一个加数=另一个加数

  8、减法关系式:

  被减数-减数=差

  被减数-差=减数

  差+减数=被减数

  9、乘法关系式:

  乘数×乘数=积

  积÷一个乘数=另一个乘数

  10、除法关系式:

  被除数÷除数=商

  被除数÷商=除数

  商×除数=被除数

【小学数学四年级下册知识点】相关文章:

小学数学四年级下册知识点07-25

小学四年级数学下册知识点讲解06-20

小学数学四年级下册知识点归纳06-05

新编小学数学四年级下册的知识点06-05

小学四年级数学下册知识点梳理07-24

小学数学四年级下册的知识点汇总03-24

人教版小学四年级数学下册知识点06-26

小学数学四年级下册知识点整理02-18

人教版小学四年级数学下册知识点04-02