六年级数学上册第一单元的知识点

时间:2023-10-01 20:35:04 嘉欣 数学 我要投稿

六年级数学上册第一单元的知识点

  在平时的学习中,说到知识点,大家是不是都习惯性的重视?知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。为了帮助大家更高效的学习,下面是小编收集整理的六年级数学上册第一单元的知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。

六年级数学上册第一单元的知识点

  六年级数学上册第一单元的知识点 1

  位置

  1、行和列的意义:竖排叫做列,横排叫做行。

  2、数对可以表示物体的位置,也可以确定物体的位置。

  3、数对表示位置的方法:先表示列,再表示行。用括号把代表列和行的'数字或字母括起来,再用逗号隔开。例如:(7,9)表示第七列第九行。

  4、两个数对,前一个数相同,说明它们所表示物体位置在同一列上。如:(2,4)和(2,7)都在第2列上。

  5、两个数对,后一个数相同,说明它们所表示物体位置在同一行上。如:(3,6)和(1,6)都在第6行上。

  6、物体向左、右平移,行数不变,列数减去或加上平移的各数。

  物体向上、下平移,列数不变,行数减去或加上平移的各数。

  六年级数学上册第一单元的知识点 2

  (一)分数乘法意义:

  1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  “分数乘整数”指的是第二个因数必须是整数,不能是分数。

  2、一个数乘分数的意义就是求一个数的几分之几是多少。

  “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

  (二)分数乘法计算法则:

  1、分数乘整数的运算法则是:分子与整数相乘,分母不变。

  (1)为了计算简便能约分的可先约分再计算。(整数和分母约分)(2)约分是用整数和下面的分母约掉最大公因数。(整数千万不能与分母相乘,计算结果必须是最简分数)。

  2、分数乘分数的运算法则是:用分子相乘的积做分子,分母相乘的积做分母。(分子乘分子,分母乘分母)

  (1)如果分数乘法算式中含有带分数,要先把带分数化成假分数再计算。

  (2)分数化简的方法是:分子、分母同时除以它们的最大公因数。

  (3)在乘的过程中约分,是把分子、分母中,两个可以约分的数先划去,再分别在它们的上、下方写出约分后的数。(约分后分子和分母必须不再含有公因数,这样计算后的结果才是最简单分数)。

  (4)分数的基本性质:分子、分母同时乘或者除以一个相同的数(0除外),分数的大小不变。

  (三)积与因数的关系:

  一个数(0除外)乘大于1的数,积大于这个数。a×b=c,当b >1时,c>a。

  一个数(0除外)乘小于1的数,积小于这个数。a×b=c,当b<1时,c

  一个数(0除外)乘等于1的数,积等于这个数。a×b=c,当b =1时,c=a 。

  在进行因数与积的大小比较时,要注意因数为0时的特殊情况。

  (四)分数乘法混合运算

  1、分数乘法混合运算顺序与整数相同,先乘、除后加、减,有括号的先算括号里面的,再算括号外面的`。

  2、整数乘法运算定律对分数乘法同样适用;运算定律可以使一些计算简便。

  乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:a×(b±c)=a×b±a×c

  (五)倒数的意义:乘积为1的两个数互为倒数。

  1、倒数是两个数的关系,它们互相依存,不能单独存在。单独一个数不能称为倒数。(必须说清谁是谁的倒数)

  2、判断两个数是否互为倒数的唯一标准是:两数相乘的积是否为“1”。例如:a×b=1则a、b互为倒数。

  3、求倒数的方法:

  ①求分数的倒数:交换分子、分母的位置。

  ②求整数的倒数:整数分之1。

  ③求带分数的倒数:先化成假分数,再求倒数。

  ④求小数的倒数:先化成分数再求倒数。

  4、1的倒数是它本身,因为1×1=1

  0没有倒数,因为任何数乘0积都是0,且0不能作分母。

  5、真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。

  假分数的倒数小于或等于1。带分数的倒数小于1。

  (六)分数乘法应用题——用分数乘法解决问题

  1、求一个数的几分之几是多少?(用乘法)

  已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

  2、巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

  3、什么是速度?

  速度是单位时间内行驶的路程。

  速度=路程÷时间 时间=路程÷速度 路程=速度×时间

  单位时间指的是1小时1分钟1秒等这样的大小为1的时间单位,每分钟、每小时、每秒钟等。

  4、求甲比乙多(少)几分之几?

  多:(甲-乙)÷乙 少:(乙-甲)÷乙

  六年级数学上册第一单元的知识点 3

  小数

  1、小数的意义:把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。

  一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……

  2、一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的数是整数部分,小数点右边的数叫做小数部分。

  3、在小数里,每相邻两个计数单位之间的进率都是10。小数部分的分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。

  分数

  1、分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

  2、把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。

  3、分数的分类

  真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

  4、约分:把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。

  5、分子分母是互质数的分数叫做最简分数。

  6、把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

  约分和通分

  1、约分的'方法:用分子和分母的公因数(1除外)去除分子、分母;通常要除到得出最简分数为止。

  2、通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。

  数学0的性质

  1、0既不是正数也不是负数,而是介于—1和+1之间的整数。

  2、0的相反数是0,即—0=0。

  3、0的绝对值是其本身。

  4、0乘任何实数都等于0,除以任何非零实数都等于0,任何实数加上0等于其本身。

  5、0没有倒数和负倒数,一个非0的数除以0在实数范围内无意义。

  6、0的正数次方等于0,0的负数次方无意义,因为0没有倒数。

  7、除0外,任何数的的0次方等于1。

  8、0也不能做除数、分数的分母、比的后项。

  9、0的阶乘等于1。

  小学数学运算定律和性质知识点

  加法:

  加法交换律:a+b=b+a

  加法结合律:(a+b)+c=a+(b+c)

  乘法:乘法交换律:a×b=b×a

  乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:(a+b)×c=a×c+b×c或a×c+b×c=(a+b)×c(b=1时,省略b)

  变式:(a—b)×c=a×c—b×c或a×c—b×c=(a—b)×c

  减法:减法性质:a—b—c=a—(b+c)

  除法:除法性质:a÷b÷c=a÷(b×c)

  六年级数学上册第一单元的知识点 4

  一、基本概念和符号:

  1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

  2、常用符号:整除符号|,不能整除符号 因为符号∵,所以的符号

  二、整除判断方法:

  1. 能被2、5整除:末位上的数字能被2、5整除。

  2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。

  3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。

  4. 能被3、9整除:各个数位上数字的和能被3、9整除。

  5. 能被7整除:

  ①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

  ②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

  6. 能被11整除:

  ①末三位上数字所组成的数与末三位以前的`数字所组成的数之差能被11整除。

  ②奇数位上的数字和与偶数位数的数字和的差能被11整除。

  ③逐次去掉最后一位数字并减去末位数字后能被11整除。

  7. 能被13整除:

  ①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

  ②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

  三、整除的性质:

  1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

  2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。

  3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

  4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

  六年级考试是小学生进入初等重点初中院校的一次重要考试,希望大家都能够认真复习,同时也希望我们准备的六年级数学数的整除知识点能让大家在六年级的备考过程助大家一臂之力!

  六年级数学上册第一单元的知识点 5

  分数混合运算

  1、分数混合运算的运算顺序与整数混合运算的运算顺序完全相同,都是先算乘除,再算加减,有括号的先算括号里的。

  ①如果是同一级运算,按照从左到右的顺序依次计算。

  ②如果是分数连乘,可先进行约分,再进行计算;

  ③如果是分数乘除混合运算时,要先把除法转换成乘法,然后按乘法运算。

  2、解决问题

  (1)用分数运算解决“求比已知量多(或少)几分之几的量是多少”的实际问题,方法是:

  第①种方法:可以先求出多或少的具体量,再用单位“1”的量加或减去多或少的部分,求出要求的问题。

  第②种方法:也可以用单位“1”加或减去多或少的几分之几,求出未知数占单位“1”的几分之几,再用单位“1”的量乘这个分数。

  (2)“已知甲与乙的和,其中甲占和的几分之几,求乙数是多少?”

  第①种方法:首先明确谁占单位“1”的几分之几,求出甲数,再用单位“1”减去甲数,求出乙数。

  第②种方法:先用单位“1”减去已知甲数所占和的几分之几,即得未知乙数所占和的几分之几,再求出乙数。

  (3)用方程解决稍复杂的分数应用题的步骤:

  ①要找准单位“1”。

  ②确定好其他量和单位“1”的量有什么关系,画出关系图,写出等量关系式。

  ③设未知量为X,根据等量关系式,列出方程。

  ④解答方程。

  (4)要记住以下几种算术解法解应用题:

  ①对应数量÷对应分率=单位“1”的量

  ②求一个数的几分之几是多少,用乘法计算。

  ③已知一个数的几分之几是多少,求这个数,用除法计算,还可以用列方程解答。

  3、要记住以下的解方程定律:

  加数+加数=和;

  加数=和–另一个加数。

  被减数–减数=差;

  被减数=差+减数;

  减数=被减数–差。

  因数×因数=积;

  因数=积÷另一个因数。

  被除数÷除数=商;

  被除数=商×除数;

  除数=被除数÷商。

  4、绘制简单线段图的方法:

  分数应用题,分两种类型,一种是知道单位“1”的量用乘法,另一种是求单位“1”的量,用除法。这两种类型应用题的数量关系可以分成三种:(一)一种量是另一种量的几分之几。(二)一种量比另一种量多几分之几。(三)一种量比另一种量少几分之几。绘制时关键处理好量与量之间的关系,在审题确定单位“1”的量。绘制步骤:

  ①首先用线段表示出这个单位“1”的量,画在最上面,用直尺画。

  ②分率的分母是几就把单位“1”的量平均分成几份,用直尺画出平均的等分。标出相关的量。

  ③再绘制与单位“1”有关的量,根据实际是上面的三种关系中的哪一种再画。标出相关的量。

  ④问题所求要标出“?”号和单位。

  5、补充知识点

  分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。

  分数乘法的计算法则

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。

  分数乘法意义

  分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的.几分之几是多少。

  分数乘整数:数形结合、转化化归

  倒数:乘积是1的两个数叫做互为倒数。

  分数的倒数

  找一个分数的倒数,例如3/4把3/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是4/3。3/4是4/3的倒数,也可以说4/3是3/4的倒数。

  整数的倒数

  找一个整数的倒数,例如12,把12化成分数,即12/1,再把12/1这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子。则是1/12,12是1/12的倒数。

  六年级数学知识点归纳

  体积和表面积

  三角形的面积=底×高÷2。公式S= a×h÷2

  正方形的面积=边长×边长公式S= a2

  长方形的面积=长×宽公式S= a×b

  平行四边形的面积=底×高公式S= a×h

  梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2

  内角和:三角形的内角和=180度。

  长方体的表面积=(长×宽+长×高+宽×高) ×2公式:S=(a×b+a×c+b×c)×2

  正方体的表面积=棱长×棱长×6公式:S=6a2

  长方体的体积=长×宽×高公式:V = abh

  长方体(或正方体)的体积=底面积×高公式:V = abh

  正方体的体积=棱长×棱长×棱长公式:V = a3

  圆的周长=直径×π公式:L=πd=2πr

  圆的面积=半径×半径×π公式:S=πr2

  圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh

  圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2

  圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh

  圆锥的体积=1/3底面×积高。公式:V=1/3Sh

  数量关系计算公式

  单价×数量=总价

  单产量×数量=总产量

  速度×时间=路程

  工效×时间=工作总量

  加数+加数=和一个加数=和+另一个加数

  被减数-减数=差减数=被减数-差被减数=减数+差

  因数×因数=积一个因数=积÷另一个因数

  被除数÷除数=商除数=被除数÷商被除数=商×除数

  六年级数学上册第一单元的知识点 6

  1.意义:分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。一个数与分数相乘,可以看作是求这个数的几分之几是多少。

  2.计算法则:

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。但分子分母不能为零.。

  3.倒数:乘积是1的两个数叫做互为倒数。

  4.求倒数地方法

  ①求分数的倒数:交换分子、分母的位置。

  ②求整数的.倒数:整数分之1。

  ③求带分数的倒数:先化成假分数,再求倒数。

  ④求小数的倒数:先化成分数再求倒数。

  5.乘法解决问题

  求一个数的几分之几是多少?(用乘法)

  小技巧:已知单位“1”的量,求单位“1”的量的几分之几是多少,用单位“1”的量与分数相乘。

  巧找单位“1”的量:在含有分数(分率)的语句中,分率前面的量就是单位“1”对应的量,或者“占”“是”“比”字后面的量是单位“1”。

  求甲比乙多(少)几分之几?

  多:(甲-乙)÷乙少:(乙-甲)÷乙

  六年级数学上册第一单元的知识点 7

  一、选择

  1、用圆规画圆,圆规两脚的距离就是所画圆额(__)

  A、圆心B、半径C、直径

  2、圆中两端都在圆上的线段(__)

  A、一定是圆的半径B、一定是圆的直径C、无法确定

  3、在日常生活中,我们所见的下水井盖一般都制成(__)。

  A、正方形B、长方形C、圆形

  4、在同一个圆中最长的一条线段是(__)。

  A、半径B、直径C、直线

  5、画一个直径为5厘米的圆,圆规两脚之间的距离是(__)

  A、5厘米B、10厘米C、2.5厘米

  二、判断并改错。

  1、所有的半径都相等,所有的直径都相等。(__)

  2、圆的半径越长,这个圆就越大。(__)

  3、画图时,圆规两脚尖之间的距离就是圆的半径。(__)

  4、圆沿一条直线滚动时,圆心在一条直线上运动。(__)

  5、两个圆的大小一样,它们的半径一定相等。(__)

  6、一条直径可以分成两条半径,两条半径也就是一条直径。(__)

  7、平行四边形、长方形、正方形、圆形都是平面图形中的直线图形。(__)

  8、经过一点可以画无数个圆。(__)

  9、经过圆心的线段一定是直径。(__)

  10、圆心相同的圆,大小也相等。(__)

  三、按要求画图。

  1、画一个半径为1厘米的圆。

  2、以点O为圆心,分别画两个大小不同的圆。

  3、用你喜欢的方法画一个半圆,并标出它的圆心,半径和直径。

  4、在下面长方形和正方形中各画一个的'圆。r=(__)d=(__)

  四、填空。

  1、图中已学过的图形有(__)、(__)、(__)、(__)。

  2、正方形的周长是(__),小圆的直径是(__),半径是(__)。

  3、直角梯形的高与上底都是(__),下底是(__),面积是(__)。

  4、大三角形的底边长是(__),高是(__),面积是(__)。

  五、解决问题

  1、在边长为12米的正方形中剪直径为3厘米的圆,你最多能剪多少个?

  2、芳芳家的餐桌面是圆形的,她妈妈要给餐桌配一块正方形桌布,量得桌面直径是1.5米,桌子高1.2米,要使正方形桌布的四角刚好接触地面,正方形桌布的对角线应是多少米?

  六年级数学上册第一单元的知识点 8

  一、课内重视听讲,课后及时复习

  课堂上特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。

  首先要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,尽量回忆而不采用不清楚立即翻书之举。认真独立完成作业,勤于思考,对于有些题目由于自己的思路不清,一时难以解出,应让自己冷静下来认真分析题目,尽量自己解决。在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识络,纳入自己的知识体系。

  二、适当多做题,养成良好的解题习惯

  1、要想学好数学,多做题目是必须的,熟悉掌握各种题型的解题思路。

  2、刚开始要从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。

  3、对于一些易错题,可备有错题集,写出自己的解题思路和正确的解题过程两者一起比较找出自己的错误所在,以便及时更正。

  4、在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。

  有些同学平时做作业都会做,可一到考试就犯不是算错数,就是看错题等等低级错误。这是因为平时解题时随便、粗心、大意等,所以小朋友平时要养成良好的`解题习惯是非常重要的!

  三、调整心态,正确对待考试

  1、首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,因为每次考试占绝大部分的也是基础性的题目,而对于那些难题及综合性较强的题目作为调剂,认真思考,尽量让自己理出头绪,做完题后要总结归纳。

  2、调整好自己的心态,使自己在任何时候镇静,思路有条不紊,克服浮躁的情绪。特别是对自己要有信心,永远鼓励自己,除了自己,谁也不能把我打倒,要有自己不垮,谁也不能打垮我的自豪感。

  3、考试前要做好准备,练练常规题,把自己的思路展开,在保证正确率的前提下提高解题速度。对于一些容易的基础题要有十二分把握拿全分;对于一些难题,也要尽量拿分,考试中要使自己的水平正常甚至超常发挥。

  由此可见,要把数学学好就得找到适合自己的学习方法,了解数学学科的特点,使自己进入数学的广阔天地中去。

  六年级数学上册第一单元的知识点 9

  一、分数乘法

  (一)分数乘法的意义和计算法则

  1、分数乘整数的意义

  2/11×3 表示: 求3个2/11是多少? 求2/11的3倍是多少?

  2、分数乘整数的计算方法

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(能约分的要先约分再乘)

  3、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。

  4、分数乘分数的的计算方法

  分数乘分数,用分子乘分子,分母乘分母。(能约分的要先约分再乘)

  (二)求一个数的几分之几是多少的问题

  1、找单位“1”的方法

  (1)是谁的几分之几,就把谁看作单位“1”。

  (2)一般把“比”字、“是”字、“占”字、“相当于”后面的量看作单位“1”。

  注意: 找单位“1”在分率句里找,有分率的句子称为分率句。

  分率不带单位,具体数量带有单位。

  2、求一个数的几倍、几分之几是多少,用乘法计算。

  15的3/5是多少? 15×3/5=9

  3、已知单位“1”用乘法计算

  单位“1”×分率=分率的对应量

  注意:(1) 乘上什么样的分率就等于什么样的数量。

  (2) 乘上谁占的分率就等于谁的数量。

  (3) 是谁的几分之几,就用谁乘上几分之几。

  4、已知A比B多(或少)几分之几,求A的解题方法

  5、积与因数的大小关系

  大于1的数,积大于A。

  A(0除外)乘上

  小于1的数,积小于A。

  二、位置与方向

  1、确定物体的位置:(上北下南,左西右东)

  (1)北偏东30°就是从北向东移,夹角靠北。

  (2)东偏北30°就是从东向北移,夹角靠东。

  2、物体位置的相对性

  (1)两地的位置关系是相对的,方向刚好相反,距离是一样的。

  例如:少年宫在学校南偏东35°的方向上,相距250米,(在学校是以学校为观测点)

  南对北 东对西

  则学校在少年宫北偏西35°的方向上,相距250米。(在少年宫是以少年宫为观测点)

  三、分数除法

  (一)倒数的认识

  1、倒数的意义

  乘积是1的两个数互为倒数。 (注意:不能单独说某个数是倒数。)

  2、求倒数的方法

  求一个分数的倒数(0除外),只要把这个分数的分子、分母调换位置。

  是带分数的先化成假分数

  是小数的先化成分数

  整数的倒数:整数是几,它的倒数就是几分之一。

  3、 1的倒数是1,0没有倒数。

  (三)分数除法

  1、分数除法的意义

  3/10÷1/10表示:已知两个因数的积是3/10,与其中一个因数是1/10,求另一个因数是多少。

  2、分数除法的计算方法

  除以一个不等于0的数,等于乘这个数的倒数。

  3、被除数与商的大小关系

  当除数小于1时,商就大于被除数。(0除外)

  当除数大于1时,商就小于被除数。(0除外)

  4、分数四则混合运算的运算顺序

  (1) 只有“+、-”或只有“×、÷”,从左往右计算。

  (2) 有“+、-”,也有“×、÷”,先乘除后加减。

  (3) 有( )、[ ]的,先算( )里面的,再算[ ]里面的。

  (一)已知一个数的几倍、几分之几是多少,求这个数。用除法计算。

  1、已知一个数的几分之几是多少,求这个数的'问题

  例:甲数是15,甲数是乙数的3/5。乙数是多少? 15÷3/5=25

  2、求一个数是另一个数的几倍、几分之几,用除法计算。

  方法是:用“是”字前面的数÷“是”字后面的数。

  例:1、15是5的几倍? 15÷5=3

  2、20是25的几分之几? 20÷25=4/5

  3、求一个数比另一个数多(或少)几分之几的解题方法是:

  用相差量÷问题“比”字后面的量

  例:(1)甲数是25,乙数是20。甲数比乙数多几分之几? (25-20)÷20=1/4

  (2) 甲数是25,乙数是20。乙数比甲数少几分之几? (25-20)÷25=1/5

  4、求单位“1”用除法计算。

  具体量(对应量)÷对应分率=单位“1”

  什么样的数量就对应什么样的分率。

  什么样的分率就对应什么样的数量。

  5、求平均数问题: 总量÷总份数=每份数

  注意:求平均每什么就除以什么数。(求每天就除以天数;求每人就除以人数;求每千克就除以千克数;求每米就除以米数……)

  6、已知A比B多(或少)几分之几,求B的解题方法:

  A÷(1+/-几分之几)=B

  7、已知单位“1”用乘法,求单位“1”用除法;

  分率比多的就1+,比少的就1-。

  8、工程问题

  把工作总量看作“1”,工作效率就是1/工作时间。

  工作时间=工作量 ÷ 工作效率

  要做的工作量 由谁做就除以谁的工作效率

  1人的效率=两人的效率和-另1人的效率

【六年级数学上册第一单元的知识点】相关文章:

六年级上册数学第一单元知识点01-18

数学第一单元知识点12-05

六年级数学上册第一单元知识点09-13

关于初一上册数学第一单元知识点01-25

五年级上册数学第一单元知识点02-03

五年级上册数学第一单元知识点01-19

数学六年级上册第三单元知识点10-24

六年级上册数学1单元知识点09-19

北师大版小学数学六年级上册第一单元知识点07-22

七年级上册数学第一单元知识点07-06