数学 百文网手机站

六年级数学上册分数乘法知识点

时间:2022-08-19 08:56:23 数学 我要投稿

六年级数学上册分数乘法知识点

  在日常生活或是工作,学习中,大家一定都或多或少地接触过一些数学知识,下面是小编为大家收集的六年级数学上册分数乘法知识点相关内容,仅供参考,希望能够帮助到大家。

六年级数学上册分数乘法知识点

  六年级数学上册分数乘法知识点 篇1

  一、分数乘法

  (一)、分数乘法的计算法则:

  1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)

  2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。

  3、为了计算简便,能约分的要先约分,再计算。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

  (二)、规律:(乘法中比较大小时)一个数(0除外)乘大于1的数,积大于这个数。一个数(0除外)乘小于1的数(0除外),积小于这个数。一个数(0除外)乘1,积等于这个数。

  (三)、分数混合运算的运算顺序和整数的运算顺序相同。

  (四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bcac+bc=(a+b)×c

  二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)

  1、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面

  2、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。

  3、写数量关系式技巧:

  (1)“的”相当于“×”“占”、“是”、“比”相当于“=”

  (2)分率前是“的”:单位“1”的量×分率=分率对应量

  (3)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量三、倒数

  1、倒数的意义:乘积是1的两个数互为倒数。强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。

  2、求倒数的方法:

  (1)、求分数的倒数:交换分子分母的位置。

  (2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。

  (3)、求带分数的倒数:把带分数化为假分数,再求倒数。

  (4)、求小数的倒数:把小数化为分数,再求倒数。

  3、1的倒数是1;0没有倒数。因为1×1=1;0乘任何数都得0,(分母不能为0)

  4、对于任意数,它的倒数为;非零整数的倒数为;分数的倒数是;

  5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

  六年级数学上册分数乘法知识点 篇2

  一、分数乘法

  (一)分数乘法的意义和计算法则

  1、分数乘整数的意义

  2/11×3 表示: 求3个2/11是多少? 求2/11的3倍是多少?

  2、分数乘整数的计算方法

  分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(能约分的要先约分再乘)

  3、一个数乘分数的意义:就是求这个数的几分之几是多少。3/5×1/4表示:求3/5的1/4是多少。

  4、分数乘分数的的计算方法

  分数乘分数,用分子乘分子,分母乘分母。(能约分的要先约分再乘)

  (二)求一个数的几分之几是多少的问题

  1、找单位“1”的方法

  (1)是谁的几分之几,就把谁看作单位“1”。

  (2)一般把“比”字、“是”字、“占”字、“相当于”后面的量看作单位“1”。

  注意: 找单位“1”在分率句里找,有分率的句子称为分率句。

  分率不带单位,具体数量带有单位。

  2、求一个数的几倍、几分之几是多少,用乘法计算。

  15的3/5是多少? 15×3/5=9

  3、已知单位“1”用乘法计算

  单位“1”×分率=分率的对应量

  注意:(1) 乘上什么样的分率就等于什么样的数量。

  (2) 乘上谁占的分率就等于谁的数量。

  (3) 是谁的几分之几,就用谁乘上几分之几。

  4、已知A比B多(或少)几分之几,求A的解题方法

  5、积与因数的大小关系

  大于1的数,积大于A。

  A(0除外)乘上

  小于1的数,积小于A。

  六年级数学上册分数乘法知识点 篇3

  一、百分数的意义:

  表示一个数是另一个数的百分之几的数叫做百分数。百分数又叫百分比或百分率,百分数不能带单位。

  注意:百分数是专门用来表示一种特殊的倍比关系的,表示两个数的比。

  1、百分数和分数的区别和联系:

  (1)联系:都可以用来表示两个量的倍比关系。

  (2)区别:意义不同:百分数只表示倍比关系,不表示具体数量,所以不能带单位。分数不仅表示倍比关系,还能带单位表示具体数量。百分数的分子可以是小数,分数的分子只可以是整数。

  注意:百分数在生活中应用广泛,所涉及问题基本和分数问题相同,分母是100的分数并不是百分数,必须把分母写成“%”才是百分数,所以“分母是100的分数就是百分数”这句话是错误的。“%”的两个0要小写,不要与百分数前面的数混淆。一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分之几等可以超过100%。一般出粉率在70%、80%,出油率在30%、40%。

  2、小数、分数、百分数之间的互化

  (1)百分数化小数:小数点向左移动两位,去掉“%”。

  (2)小数化百分数:小数点向右移动两位,添上“%”。

  (3)百分数化分数:先把百分数写成分母是100的分数,然后再化简成最简分数。

  (4)分数化百分数:分子除以分母得到小数,(除不尽的保留三位小数)然后化成百分数。

  (5)小数化分数:把小数成分母是10、100、1000等的分数再化简。

  (6)分数化小数:分子除以分母。

  二、百分数应用题

  1、求常见的百分率,如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几。

  2、求一个数比另一个数多(或少)百分之几,实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

  求甲比乙多百分之几:(甲-乙)÷乙

  求乙比甲少百分之几:(甲-乙)÷甲

  3、求一个数的百分之几是多少。一个数(单位“1”)×百分率

  4、已知一个数的百分之几是多少,求这个数。

  部分量÷百分率=一个数(单位“1”)

  5、折扣、打折的意义:几折就是十分之几也就是百分之几十

  折扣、成数=几分之几、百分之几、小数

  八折=八成=十分之八=百分之八十=0.8

  八五折=八成五=十分之八点五=百分之八十五=0.85

  五折=五成=十分之五=百分之五十=0.5=半价

  6、利率

  (1)存入银行的钱叫做本金。

  (2)取款时银行多支付的钱叫做利息。

  (3)利息与本金的比值叫做利率。

  利息=本金×利率×时间

  税后利息=利息-利息的应纳税额=利息-利息×5%

  注:国债和教育储蓄的.利息不纳税

  7、百分数应用题型分类

  (1)求甲是乙的百分之几——(甲÷乙)×100%=百分之几

  (2)求甲比乙多百分之几——(甲-乙)÷乙×100%

  (3)求甲比乙少百分之几——(乙-甲)÷乙×100%

  三、数学分数乘法知识点

  1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(为了计算简便,能约分的要先约分,然后再乘。)

  注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

  3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。

  4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。(为了计算简便,可以先约分再乘。)注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。

  5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。

  乘法交换律:a×b=b×a

  乘法结合律:(a×b)×c=a×(b×c)

  乘法分配律:(a+b)×c=ac+bcac+bc=(a+b)×c

  6.乘积是1的两个数互为倒数。

  7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。

  1的倒数是1。0没有倒数。真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。

  注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。

  8.一个数(0除外)乘以一个真分数,所得的积小于它本身。

  9.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。

  10.一个数(0除外)乘以一个带分数,所得的积大于它本身。

  11.分数应用题一般解题步骤。

  (1)找出含有分率的关键句。

  (2)找出单位“1”的量(以后称为“标准量”)找单位“1”:在分率句中分率的前面;或“是”、“占”、“比”、“相当于”的后面

  (3)画出线段图,标准量与比较量是整体与部分的关系画一条线段即可,标准量与比较量不是整体与部分的关系画两条线段即可。

  (4)根据线段图写出等量关系式:标准量×对应分率=比较量。

  求一个数的几倍:一个数×几倍;

  求一个数的几分之几是多少:一个数×几几。

  四、五年级数学知识点复习

  1.轴对称:

  如果一个图形沿一条直线折叠,直线两侧的图形能够互相重合,这个图形就叫做轴对称图形,这时,我们也说这个图形关于这条直线(成轴)对称。

  2.轴对称图形的性质

  把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

  3.轴对称的性质

  经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。这样我们就得到了以下性质:

  (1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

  (2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

  (3)线段的垂直平分线上的点与这条线段的两个端点的距离相等。

  (4)对称轴是到线段两端距离相等的点的集合。

  4.轴对称图形的作用

  (1)可以通过对称轴的一边从而画出另一边;

  (2)可以通过画对称轴得出的两个图形全等。

  5.因数

  整数B能整除整数A,A叫作B的倍数,B就叫做A的因数或约数。在自然数的范围内例:在算式6÷2=3中,2、3就是6的因数。

  6.自然数的因数(举例)

  6的因数有:1和6,2和3。

  10的因数有:1和10,2和5。

  15的因数有:1和15,3和5。

  25的因数有:1和25,5。

  7.因数的分类

  除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数和商是被除数的因数。

  我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。

  8.倍数:对于整数m,能被n整除(n/m),那么m就是n的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。

  一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。

  9.完全数:完全数又称完美数或完备数,是一些特殊的自然数。它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。

  10.偶数:整数中,能够被2整除的数,叫做偶数。

  六年级数学上册分数乘法知识点 篇4

  (一)、折扣和成数

  1、折扣:用于商品,现价是原价的百分之几,叫做折扣。通称“打折”。

  几折就是十分之几,也就是百分之几十。例如:八折=8/10=80%,

  六折五=6.5/10=65/100=65%

  解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

  商品现在打八折:现在的售价是原价的80%

  商品现在打六折五:现在的售价是原价的65%

  2、成数:

  几成就是十分之几,也就是百分之几十。例如:一成=1/10=10%

  八成五=8.5/10=85/100=80%

  解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。

  这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10%

  今年小麦的收成是去年的八成五:今年小麦的收成是去年的85%

  (二)、税率和利率

  1、税率

  (1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。

  (2)纳税的意义:税收是国家财政收入的主要来源之一。国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。

  (3)应纳税额:缴纳的税款叫做应纳税额。

  (4)税率:应纳税额与各种收入的比率叫做税率。

  (5)应纳税额的计算方法:

  应纳税额=总收入×税率

  收入额=应纳税额÷税率

  2、利率

  (1)存款分为活期、整存整取和零存整取等方法。

  (2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。

  (3)本金:存入银行的钱叫做本金。

  (4)利息:取款时银行多支付的钱叫做利息。

  (5)利率:利息与本金的比值叫做利率。

  (6)利息的计算公式:

  利息=本金×利率×时间

  利率=利息÷时间÷本金×100%

  (7)注意:如要上利息税(国债和教育储藏的利息不纳税),则:

  税后利息=利息-利息的应纳税额=利息-利息×利息税率=利息×(1-利息税率)

  税后利息=本金×利率×时间×(1-利息税率)

  购物策略:

  估计费用:根据实际的问题,选择合理的估算策略,进行估算。

  购物策略:根据实际需要,对常见的几种优惠策略加以分析和比较,并能够最终选择最为优惠的方案

  数学最小的数是什么

  要回答这个问题,我们首先看一下“几位数”的概念:在一个数中数字的个数是几(其最左端的数字不为0),这个数就是几位数。关于几位数的定义中,最左端的数字不为0是关键条件。就像我们分数定义中,明确规定分母不为0一样,否则没意义。

  在整数中,最小的计数单位是1(个),当0单独存在时,它不占有数位。当0出现在一个几位数的末尾或中间时,它起到的只是“占位”的作用,表示该位上没有计数单位。

  假设0也算一位数的话,那么最小的两位数是“10”还是“00”呢?00是没有两位数的意义的。

  所以,一位数是由一个不是0这个数字写出的数,只要几位数的意义不变,最小的一位数仍然是1。

  数学三位数乘两位数知识点

  速度×时间=路程

  单价×数量=总价

  工作效率×工作时间=工作总量

  路程÷时间=速度

  总价÷单价=数量

  工作总量÷工作时间=工作效率

  路程÷速度=时间

  总价÷数量=单价

  工作总量÷工作效率=工作时间

  积的变化规律:一个因数不变,另一个因数乘或除以几,积也乘或除以几(零除外)

  一个因数乘几,另一个因数除以几,积不变(零除外)。

  两位数乘三位数,积最多五位数,最少四位数

  估算原则:便于口算、接近准确数、能解决实际问题(估大或估小)

  六年级数学上册分数乘法知识点 篇5

  1 .分数的意义

  把单位1平均分成若干份,表示这样的一份或者几份的数叫做分数。

  在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位1平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。

  把单位1平均分成若干份,表示其中的一份的数,叫做分数单位。

  2. 分数的分类

  真分数:分子比分母小的分数叫做真分数。真分数小于1。

  假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。

  带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。

  3 .约分和通分

  把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。

  分子分母是互质数的分数,叫做最简分数。

  把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。

  4.百分数

  表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率 或百分比。百分数通常用%来表示。百分号是表示百分数的符号。

  六年级数学上册分数乘法知识点 篇6

  一、单元分析

  本单元教材是在学生掌握了整数乘法,分数的意义、性质,以及分数加、减法的计算等知识的基础上进行教学的。内容包括分数乘法、利用分数乘法解决问题、倒数的认识。这些内容都属于分数中的基本知识和技能。利用这些知识不仅可以解决有关的实际问题,而且也是后面学习分数除法,以及百分数知识的重要基础。

  二、单元学习目标

  1.建立分数乘法的原型,掌握分数乘法的计算方法,能够比较熟练地进行计算。

  2.理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。

  3.会利用分数乘法解决一些实际问题。

  4.使学生理解倒数的意义,掌握求倒数的方法。

  三、单元课时总数:9课时

  课题:分数乘整数1课时上课时间:年月日

  教材分析

  这部分教材是在已学的整数乘法的意义和分数加法计算的基础上进行教学的。分数乘整数的意义和整数乘法的意义相同,只是这里变成了分数。因此,教材通过人跑一步相当于袋鼠跳一下的2/11。问人跑3步的距离是袋鼠跳一下的几分之几?这一情境来让学生理解什么样的问题可以用乘法来解决。在此基础上再进行分数乘整数的计算方法的学习。通过分数加法来进一步学习分数乘整数的计算方法。

  学情分析

  学生已学过整数乘法的意义,约分和分数加法计算。学生可以利用分数加法导出分数乘整数时只需把分子和整数相乘的积作分子,分母不变。在此基础上总结出分数乘整数的计算方法。学生在刚学习分数乘法时可能会有时想不到先约分。所以教师在教学时在这方面还要加以强调。

  教学目标

  1、使学生理解分数乘法的原型,掌握分数乘法的计算方法,能够正确地进行计算.

  2、培养学生的计算能力。

  3、激发学生学习兴趣,热爱学习数学。

  教学过程备注

  活动一:创设情境,初步理解分数乘法的原型

  教师出示例1:人跑一步的距离相当于袋鼠跳一下的。人跑3步的距离是袋鼠跳一下的几分之几?

  让学生审题后独立试做。

  学生可能会出现以下两种做法:

  (1)学生用连加法列式

  (2)用乘法列式

  借助于分数加法来理解理分数乘法的原型。

  活动二:教学分数乘整数的计算方法

  1、师:++和3都是求3步的距离是袋鼠跳一下的几分之几。你又都是怎样计算的呢?

  全班交流,感觉分数乘整数的计算方法。

  总结分数乘整数是怎样计算的:用分数的分子和整数相乘的积作分子,分母不变。

  2、教学例2:6=

  让学生试做,然后教师强调计算时能约分的可以先约分,再计算。教师板书。

  活动三:反馈练习

  1、完成9页中的做一做。

  教师注意强调学生的书写格式以及能约分的要先约分。

  注意体会在什么情况下用分数乘法来解决问题。

  2、完成练习二中的1、2题。

  活动四:质疑总结。

【六年级数学上册分数乘法知识点】相关文章:

分数乘法的数学知识点02-11

六年级上册数学知识点分数乘法02-17

小学数学分数乘法知识点01-27

分数乘法小学六年级数学上册知识点11-07

六年级数学上册分数乘法知识点归纳12-18

六年级数学上册分数乘法的知识点归纳01-26

小学六年级数学上册分数乘法的知识点12-22

小学六年级数学上册分数乘法知识点02-29

六年级数学上册《分数乘法》知识点复习04-08