数学 百文网手机站

高一上册数学第三章知识点整理

时间:2022-11-07 11:56:25 数学 我要投稿

高一上册数学第三章知识点整理

  在平平淡淡的学习中,大家最不陌生的就是知识点吧!知识点有时候特指教科书上或考试的知识。你知道哪些知识点是真正对我们有帮助的吗?下面是小编精心整理的高一上册数学第三章知识点整理,仅供参考,欢迎大家阅读。

高一上册数学第三章知识点整理

  1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。

  2、用函数解应用题的基本步骤是:

  (1)阅读并且理解题意.(关键是数据、字母的实际意义);

  (2)设量建模;

  (3)求解函数模型;

  (4)简要回答实际问题。

  常见考法本节知识在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较复杂的函数的最值等问题,属于拔高题,难度较大。

  误区提醒

  1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。

  2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。

  【典型例题】

  例1

  (1)某种储蓄的月利率是0.36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利).

  (2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式.如果存入本金1000元,每期利率2.25%,试计算5期后的本利和是多少?解:(1)利息=本金月利率月数.y=100+1000.36%x=100+0.36x,当x=5时,y=101.8,5个月后的本息和为101.8元.

  例2

  某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的.利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)

  (1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。

  (2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能是企业获得最大利润,其最大利润约为多少万元。(精确到1万元)。

  《函数》知识点复习

  1. 函数的奇偶性

  (1)若f(x)是偶函数,那么f(x)=f(-x) ;

  (2)若f(x)是奇函数,0在其定义域内,则 f(0)=0(可用于求参数);

  (3)判断函数奇偶性可用定义的等价形式:f(x)±f(-x)=0或 (f(x)≠0);

  (4)若所给函数的解析式较为复杂,应先化简,再判断其奇偶性;

  (5)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有相反的单调性;

  2. 复合函数的有关问题

  (1)复合函数定义域求法:若已知 的定义域为[a,b],其复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域(即 f(x)的定义域);研究函数的问题一定要注意定义域优先的原则。

  (2)复合函数的单调性由“同增异减”判定;

  3.函数图像(或方程曲线的对称性)

  (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;

  (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;

  (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);

  (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;

  (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称;

  (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;

  4.函数的周期性

  (1)y=f(x)对x∈R时,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a>0)恒成立,则y=f(x)是周期为2a的周期函数;

  (2)若y=f(x)是偶函数,其图像又关于直线x=a对称,则f(x)是周期为2︱a︱的周期函数;

  (3)若y=f(x)奇函数,其图像又关于直线x=a对称,则f(x)是周期为4︱a︱的周期函数;

  (4)若y=f(x)关于点(a,0),(b,0)对称,则f(x)是周期为2 的周期函数;

  (5)y=f(x)的图象关于直线x=a,x=b(a≠b)对称,则函数y=f(x)是周期为2 的周期函数;

  (6)y=f(x)对x∈R时,f(x+a)=-f(x)(或f(x+a)= ,则y=f(x)是周期为2 的周期函数;

  5.方程k=f(x)有解 k∈D(D为f(x)的值域);

  a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;

  (1) (a>0,a≠1,b>0,n∈R+);

  (2) l og a N= ( a>0,a≠1,b>0,b≠1);

  (3) l og a b的符号由口诀“同正异负”记忆;

  (4) a log a N= N ( a>0,a≠1,N>0 );

  6. 判断对应是否为映射时,抓住两点:

  (1)A中元素必须都有象且唯一;

  (2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;

  7. 能熟练地用定义证明函数的单调性,求反函数,判断函数的奇偶性。

  8.对于反函数,应掌握以下一些结论:

  (1)定义域上的单调函数必有反函数;

  (2)奇函数的反函数也是奇函数;

  (3)定义域为非单元素集的偶函数不存在反函数;

  (4)周期函数不存在反函数;

  (5)互为反函数的两个函数具有相同的单调性;

  (6) y=f(x)与y=f-1(x)互为反函数,设f(x)的定义域为A,值域为B,则有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A);

  9.处理二次函数的问题勿忘数形结合

  二次函数在闭区间上必有最值,求最值问题用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系;

  10 依据单调性

  利用一次函数在区间上的保号性可解决求一类参数的范围问题;

  11 恒成立问题的处理方法:

  (1)分离参数法;

  (2)转化为一元二次方程的根的分布列不等式(组)求解;

  练习题:

  1. (-3,4)关于x轴对称的点的坐标为_________,关于y轴对称的点的坐标为__________,

  关于原点对称的坐标为__________.

  2. 点B(-5,-2)到x轴的距离是____,到y轴的距离是____,到原点的距离是____

  3. 以点(3,0)为圆心,半径为5的圆与x轴交点坐标为_________________,

  与y轴交点坐标为________________

  4. 点P(a-3,5-a)在第一象限内,则a的取值范围是____________

  5. 小华用500元去购买单价为3元的一种商品,剩余的钱y(元)与购买这种商品的件数x(件)

  之间的函数关系是______________,x的取值范围是__________

  6. 函数y= 的自变量x的取值范围是________

  7. 当a=____时,函数y=x 是正比例函数

  8. 函数y=-2x+4的图象经过___________象限,它与两坐标轴围成的三角形面积为_________,

  周长为_______

  9. 一次函数y=kx+b的图象经过点(1,5),交y轴于3,则k=____,b=____

  10.若点(m,m+3)在函数y=- x+2的图象上,则m=____

  11. y与3x成正比例,当x=8时,y=-12,则y与x的函数解析式为___________

  12.函数y=- x的图象是一条过原点及(2,___ )的直线,这条直线经过第_____象限,

  当x增大时,y随之________

  13.函数y=2x-4,当x_______,y0,b0,b>0; C、k

【高一上册数学第三章知识点整理】相关文章:

高一数学上册知识点整理:集合03-06

高一数学必修一第三章知识点整理07-22

数学高一函数知识点整理02-22

初二上册数学第三章方向与位置知识点整理07-10

高一数学集合知识点整理02-18

初二数学上册知识点整理07-27

高一数学第三章函数模型的应用实例知识点整理07-22

高一数学上册第三章函数的应用知识点07-22

函数的定义域高一数学上册知识点整理07-22