数学 百文网手机站

《数学广角》知识点

时间:2022-04-02 15:45:15 数学 我要投稿

《数学广角》知识点

  在我们平凡无奇的学生时代,看到知识点,都是先收藏再说吧!知识点就是掌握某个问题/知识的学习要点。为了帮助大家掌握重要知识点,下面是小编帮大家整理的《数学广角》知识点,欢迎阅读与收藏。

《数学广角》知识点

  《数学广角》知识点1

  数学广角(植树问题)

  一、1.两头(两端)要栽:棵数=间隔数+1

  2.一头(一端)要栽:棵数=间隔数

  3.两头(两端)不栽:棵数=间隔数-1

  二、棋盘棋子数目:

  1.棋盘最外层棋子数:每边棋子数×边数-边数

  2.棋盘总的棋子数:每行棋子数×每列棋子数

  3.方阵最外层人数:每边人数×4-4

  4.多边形上摆花盆:每边摆的花盆数×边数-边数

  数学广角——鸽巢问题

  一、鸽巢问题

  1.把n+1(n是大于的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进了2个物体。

  2.把多于kn(k、n都是大于的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进(k+1)个物体。

  二、鸽巢问题的应用

  1.如果有n(n是大于的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了2个物品,那么至少需要有n+1个物品。

  2.如果有n(n是大于的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了(k+1)(k是大于的自然数)个物品,那么至少需要有(kn+1)个物品。

  3.(分放的物体总数-1)÷(其中一个鸽笼里至少有的物体个数-1)=a……b(b),a就是所求的鸽笼数。

  4.利用“鸽巢问题”解决问题的思路和方法:构造“鸽巢”,建立“数学模型”;把物体放入“鸽巢”,进行比较分析;说明理由,得出结论。

  例如:有4只鸽子飞进3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。

  提示:解决“鸽巢问题”的关键是找准谁是“鸽笼”,谁是“鸽子”。

  小学数学四大领域主要内容

  数与代数:的认识,数的表示,数的大小,数的运算,数量的'估计;

  图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;

  统计与概率:收集、整理和描述数据,处理数据;

  实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。

  数学列方程解应用题的一般步骤

  1、弄清题意,找出未知数,并用X表示;

  2、找出应用题中数量之间的相等关系,列方程;

  3、解方程;

  4、检验、写出答案。

  《数学广角》知识点2

  1.如果是谁拿到最后一个谁就赢,那么公式就是:

  总数÷(小数+大数)=商……余数,余数就是要求的答案,比如下面的第1题。

  如果是谁拿到最后一个谁就输,那么公式就是

  2.(总数-1)÷(小数+大数)=商……余数,余数就是要求的答案,比如下面的第2题

  练习

  1.箱子里装了16个球,乐乐和聪聪轮流从中拿1个球或者2个球,谁拿到最后一个球谁就获胜?如果聪聪先拿,第一次应该拿几个球才能确保获胜?每人轮流从中拿1个或者2个,那么作为聪聪就要首先保证他和乐乐拿的球数的和是2+1=3,也就是乐乐拿一个聪聪就拿2个,乐乐拿2个,聪聪拿1个,16÷(2+1)=5…… 1,所以聪聪先拿走剩下的一个,那么剩下的无论乐乐拿1个还是2个,聪聪只要保证和他的和是3个就可以了。

  2.试卷:54张扑克牌,甲乙两人轮流拿,每人每次只拿1---4张,谁拿到最后一张谁就输,若甲先拿牌,怎样拿牌保证甲获胜

  问题关键:是保证获胜,因此我们用的方法必须确保甲一定获胜。

  要想保证甲获胜,首先得保证甲拿到的是第53张牌,那么乙肯定拿到是第54张牌,乙肯定就输了,而每人轮流是拿1-4张,那么为了确保获胜,必须保证甲和乙拿的牌数的和是5,也就是如果乙拿1张,甲就拿4张,乙拿2张,甲就拿3张,乙拿3张,甲就拿2张,乙拿4张,甲就拿1张,和是5,53里边有几个5呢?(54-1)÷(1+4)=10…… 3,所以甲先把多余的3张先拿走,剩下的无论乙怎么拿,只要每次保证每次拿的张数的和是5就可以了。

  分数乘法意义

  1、分数乘整数的意义与整数乘法的意义相同,就是求几个相同加数的和的简便运算。

  “分数乘整数”指的是第二个因数必须是整数,不能是分数。

  2、一个数乘分数的意义就是求一个数的几分之几是多少。

  “一个数乘分数”指的是第二个因数必须是分数,不能是整数。(第一个因数是什么都可以)

  世界最大的数和最小的数

  最大的数,从数学意义上讲是不存在的。但是有一个数,宇宙间任何一个量都未能超过它,这个数就是10的100次方,也叫“古戈尔”(gogul的译音)。

  目前世界上每秒运算10亿(10的9次方)次的最快速的电子计算机,假定它从宇宙形成时(距今约200亿年)就开始运算,到今天,其运算总次数也不够10的100次方次。

  没有最小的数字,但有最小的自然数,就是“0”。

【《数学广角》知识点】相关文章:

小学数学广角知识点10-18

《数学广角》教学设计11-27

数学广角植树问题教案02-23

四年级下册数学广角知识点10-25

二年级下册数学广角的知识点10-18

五年级数学数学广角期末复习要点05-20

五年级数学上册《数学广角》同步试题01-25

数学必考知识点09-13

数学向量知识点11-17

数学知识点03-02