数学平面直角坐标系的知识点
漫长的学习生涯中,是不是听到知识点,就立刻清醒了?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。想要一份整理好的知识点吗?下面是小编精心整理的数学平面直角坐标系的知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
数学平面直角坐标系的知识点1
1.平面直角坐标系:
(1)在平面内两条有公共点并且互相垂直的数轴就构成了平面直角坐标系,通常把其中水平的一条数轴叫横轴或轴,取向右的方向为正方向;铅直的数轴叫纵轴或轴,取向上的方向为正方向;两数轴的交点叫做坐标原点。
(2)建立了直角坐标系的平面叫坐标平面.x轴和y轴把坐标平面分成四个部分,称为四个象限,按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限
说明:两条坐标轴不属于任何一个象限。
2.点的坐标:
对于平面直角坐标系内任意一点P,过点P分别向x轴和y轴作垂线,垂足在x轴,y轴对应的数a,b分别叫做点P的横坐标,纵坐标,有序数对(a,b)叫做P的坐标。
3.点与有序实数对的关系:坐标平面内的点可以用有序实数对来表示,反过来每一个有序实数对应着坐标平面内的一个点,即坐标平面内的点和有序实数对是一一对应的关系。
数学平面直角坐标系的知识点2
一、平面解析几何的基本思想和主要问题
平面解析几何是用代数的方法研究几何问题的一门数学学科,其基本思想就是用代数的方法研究几何问题。例如,用直线的方程可以研究直线的性质,用两条直线的方程可以研究这两条直线的位置关系等。
平面解析几何研究的问题主要有两类:一是根据已知条件,求出表示平面曲线的方程;二是通过方程,研究平面曲线的性质。
二、直线坐标系和直角坐标系
直线坐标系,也就是数轴,它有三个要素:原点、度量单位和方向。如果让一个实数与数轴上坐标为的点对应,那么就可以在实数集与数轴上的点集之间建立一一对应关系。
点与实数对应,则称点的`坐标为,记作,如点坐标为,则记作;点坐标为,则记为。
直角坐标系是由两条互相垂直且有公共原点的数轴组成,两条数轴的度量单位一般相同,但有时也可以不同,两个数轴的交点是直角坐标系的原点。在平面直角坐标系中,有序实数对构成的集合与坐标平面内的点集具有一一对应关系。
一个点的坐标是这样求得的,由点向轴及轴作垂线,在两坐标轴上形成正投影,在轴上的正投影所对应的值为点的横坐标,在轴上的正投影所对应的值为点的纵坐标。
在学习这两种坐标系时,要注意用类比的方法。例如,平面直角坐标系是二维坐标系,它有两个坐标轴,每个点的坐标需用两个实数(即一对有序实数)来表示,而直线坐标系是一维坐标系,它只有一个坐标轴,每个点的坐标只需用一个实数来表示。
三、向量的有关概念和公式
如果数轴上的任意一点沿着轴的正向或负向移动到另一个点,则说点在轴上作了一次位移。位移是一个既有大小又有方向的量,通常叫做位移向量,简称向量,记作。如果点移动的方向与数轴的正方向相同,则向量为正,否则为负。线段的长叫做向量的长度,记作。向量的长度连同表示其方向的正负号叫做向量的坐标(或数量),用表示。这里同学们要分清,,三个符号的含义。
对于数轴上任意三点,都有成立。该等式左边表示在数轴上点向点作一次位移,等式右边表示点先向点作一次位移,再由点向点作一次位移,它们的最终结果是相同的。
向量的坐标公式(或数量公式),它表示向量的数量等于终点的坐标减去起点的坐标,这个公式非常重要。
有相等坐标的两个向量相等,看做同一个向量;反之,两个相等向量坐标必相等。
注意:①相等的所有向量看做一个整体,作为同一向量,都等于以原点为起点,坐标与这所有向量相等的那个向量。②向量与数轴上的实数(或点)是一一对应的,零向量即原点。
四、坐标法
坐标法是数学中一种重要的数学思想方法,它是借助于坐标系来研究几何图形的一种方法,是数形结合的典范。这种方法是在平面上建立直角坐标系,用坐标表示点,把曲线看成满足某种条件的点的集合或轨迹,用曲线上点的坐标所满足的方程表示曲线,通过研究方程,间接地来研究曲线的性质。
数学平面直角坐标系的知识点3
1、有序数对
有顺序的两个数a与b组成的数对,叫做有序数对。
2、平面直角坐标系
平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
平面上的任意一点都可以用一个有序数对来表示。
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。坐标轴上的点不属于任何象限。
3、坐标方法的简单应用
用坐标表示地理位置
利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:
⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;
⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;
⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
4、用坐标表示平移
在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x—a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y—b))。
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。
数学平面直角坐标系的知识点4
平面直角坐标系的用用很广,可以用坐标表示地理位置,也可以用坐标表示平移。
平面直角坐标系
在平面“二维”内画两条互相垂直,并且有公共原点的数轴。简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴(x-axis),取向右方向为正方向;纵轴为Y轴(y-axis),取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限(quadrant),右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。
点的坐标
建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标(coordinate)。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。
对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(ordered pair)(a,b)叫做点C的坐标。
一个点在不同的象限或坐标轴上,点的坐标不一样。
(第一象限还可以写成Ⅰ,第二象限还可以写成Ⅱ,
第三象限还可以写成Ⅲ,第四象限也可以写成Ⅳ)
特殊位置的点的坐标的特点
1.x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
2.第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。
3.在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
4.点到轴及原点的距离
点到x轴的距离为|y|; 点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;
在平面直角坐标系中对称点的特点
1.关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。(横同纵反)
2.关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。(横反纵同)
3.关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。(横纵皆反)
各象限内和坐标轴上的点的符号和坐标的规律
横坐标 纵坐标
第一象限:(+,+)正正
第二象限:(-,+)负正
第三象限:(-,-)负负
第四象限:(+,-)正负
x轴正半轴:(+,0)
x轴负半轴:(-,0)
y轴正半轴:(0,+)
y轴负半轴: (0,-)
x轴上的点的纵坐标为0,y轴上的点的横坐标为0。
原点:(0,0)
注:以数对形式(x,y)表示的坐标系中的点(如2,-4),“2”是x轴坐标,“-4”是y轴坐标。
笛卡尔坐标的思想是法国数学家和哲学家笛卡尔创立的。
数学平面直角坐标系的知识点5
平面直角坐标系:
在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:
①在同一平面
②两条数轴
③互相垂直
④原点重合
三个规定:
①正方向的规定横轴取向右为正方向,纵轴取向上为正方向
②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。
相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。
数学平面直角坐标系的知识点6
填空题答题技巧
要求熟记的基本概念、基本事实、数据公式、原理,复习时要特别细心,注意记熟,做到临考前能准确无误、清晰回忆。
对那些起关键作用的,或最容易混淆记错的概念、符号或图形要特别注意,因为考查的往往就是它们。如区间的端点开还是闭、定义域和值域要用区间或集合表示、单调区间误写成不等式或把两个单调区间取了并集等等。
解答题答题技巧
(1)仔细审题。注意题目中的关键词,准确理解考题要求。
(2)规范表述。分清层次,要注意计算的准确性和简约性、逻辑的条理性和连贯性。
(3)给出结论。注意分类讨论的问题,最后要归纳结论。
(4)讲求效率。合理有序的书写试卷和使用草稿纸,节省验算时间。
数学平面直角坐标系的知识点7
有理数加法法则
1、同号两数相加,取相同的符号,并把绝对值相加;
2、异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
3、一个数与0相加,仍得这个数。
有理数加法的运算律
1、加法的交换律:a+b=b+a;
2、加法的结合律:(a+b)+c=a+(b+c)
有理数减法法则
减去一个数,等于加上这个数的相反数;即a—b=a+(—b)
有理数乘法法则
1、两数相乘,同号为正,异号为负,并把绝对值相乘;
2、任何数同零相乘都得零;
3、几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定。
【数学平面直角坐标系的知识点】相关文章:
初一数学平面直角坐标系的知识点10-20
初一数学平面直角坐标系知识点介绍01-26
平面直角坐标系初一数学知识点总结11-10
八年级上册数学平面直角坐标系知识点03-17
Excel表格怎么制作平面直角坐标系09-29
高考数学复习平面向量的知识点09-12
必修二数学点直线平面位置关系知识点10-15
平面向量数学高考一轮复习知识点09-17
数学必修四第二章平面向量知识点10-21
必修二数学两个平面的位置关系知识点10-15