小学三年级上册数学知识点归纳

时间:2024-10-19 00:14:44 嘉璇 数学 我要投稿

小学三年级上册数学知识点归纳

  数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。以下是小编为大家收集的小学三年级上册数学知识点归纳,欢迎大家借鉴与参考,希望对大家有所帮助。

小学三年级上册数学知识点归纳

  第一单元 时 分 秒

  1、钟面上有3根针,它们分别是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。(时针最短,秒针最长)

  2、计量很短的时间,常用秒。秒是比分更小的时间单位。

  3、钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。

  4、秒表:一般在体育运动中用来记录以秒为单位的时间。

  5、常用时间单位:时、分、秒。

  6、时间单位:时、分、秒,每相邻两个单位之间的进率都是60。

  1时=60分 1分=60秒 半时=30分 30分=半时

  7、分针走一圈,时针走一大格,是1小时。秒针走一圈,分针走一小格,是1分。

  8、计算一段时间,可以用结束的时刻减去开始的时刻。

  第二、四单元 万以内的加法和减法

  1、最大的几位数和最小的几位数:

  最大的一位数是9, 最小的一位数是0。

  最大的二位数是99, 最小的二位数是10

  最大的三位数是999, 最小的三位数是100

  最大的四位数是9999, 最小的四位数是1000

  最大的五位数是99999, 最小的五位数是10000

  最大的三位数比最小的四位数小1。

  2、笔算加减法时:相同数位要对齐;从个位算起。哪一位上的数相加满10,就向前一位进1;哪一位上的数不够减,就从前一位退1当作10,加本位再减;如果前一位是0,则再从前一位退1。

  3、两个三位数相加的和:可能是三位数,也有可能是四位数。

  4、加法公式:

  加数 + 加数 = 和

  和 — 另一个加数 = 加数

  5、减法公式:

  被减数 — 减数 = 差

  差 + 减数 = 被减数 或 被减数 = 差 + 减数

  被减数 — 差 = 减数

  6、口算时:

  例:(1)35+48,先算35+40=75,再算75+8=83。

  (2)72—28,先算72—20=52,再算52—8=44

  或 先算72—30=42,再算42+2=44

  7、问题中出现“大约”、“约”、“估一估”、 “估算”、 “估计一下” “应准备”等词语时,都是用估算。

  第三单元 测量

  1、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。

  量比较长的物体,常用米(m)做单位。

  量比较长的路程一般用千米(km)做单位。

  2、运动场的跑道,通常1圈是400米,2圈半是1000米。

  3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙、身份证的厚度大约是1毫米。

  4、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。

  5、1厘米中间的每一小格的长度是1毫米。

  6、在计算长度时,只有相同的长度单位才能相加减;单位不同时,要先转化成相同的单位再计算。

  7、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。

  8、常用长度单位:米、分米、厘米、毫米、千米。

  9、长度单位:米、分米、厘米、毫米,每相邻两个单位之间的进率都是10。

  1米=10分米, 1分米=10厘米, 1厘米=10毫米

  1米=100厘米 1千米(公里)=1000米

  10、质量单位 :吨、千克、克,每相邻两个单位之间的进率都是1000 。

  1吨=1000千克 1千克=1000克

  第五单元 倍的认识

  求一个数是另一个数的几倍是多少? 用除法计算: 一个数÷另一个数=倍数

  36是4的几倍? 36÷4=9

  已知一个数的几倍是A,求这个数。 用除法计算: A÷倍数=这个数

  已知一个数的5倍数是35,求这个数? 35÷5=7

  求一个数的几倍是多少? 用乘法计算: 一个数×倍数= 结果

  9的6倍是多少? 9×6=54

  第六单元 多位数乘一位数

  1、多位数乘一位数(进位)的笔算方法:

  相同数位对齐,从个位乘起,用一位数依次去乘多位数的每一位,哪一位上乘得的数数积满几十,就向前一位进几。

  2、在乘法里,乘数也叫做因数。

  3、0和任何数相乘都得0;1和任何不是0的数相乘还得这个数。

  4、三位数乘一位数:积有可能是三位数,也有可能是四位数。

  第七单元 长方形和正方形

  1、用相同的小正方形拼长方形或正方形时,拼成的图形长和宽越接近(或长、宽相等)时,周长最短。

  2、四边形的特点:有4条直的边,有4个角。

  3、长方形的特点:对边相等,有4个直角。

  4、正方形的特点:4条边都相等,有4个直角。

  5、封闭图形一周的长度,是它的周长。

  6、长方形的周长=(长+宽)×2 正方形的周长=边长×4

  7、在一个长方形中剪出一个最大的正方形,长方形的宽就是这个正方形的边长。

  第八单元 分数的初步认识

  1、 分数的意义:把一个整体平均分成若干份,表示1份或几份的数就是分数。

  表示:把一个整体平均分成5份,取其中的两份

  表示:把一个整体平均分成4份,取其中的一份

  2、比较大小的方法:

  (1)分子相同,分母小的分数就大。

  (2)分母相同:分子大的分数就大。

  3、同分母分数相加减,分母不变,只把分子相加减。

  4、4米的1/5和1米的4/5同样长。

  5、分子比分母小的分数叫做真分数;分子比分母大或者分子和分母相等的分数叫做假分数。

  6、真分数小于1。假分数大于或等于1。真分数总是小于假分数。

  7、男生人数是女生人数的3/4,则女生人数是男生人数的4/3。

  8、分数与除法的关系:被除数相当于分数的分子,除数相当于分数的分母。被除数÷除数=除数(被除数)如果用a表示被除数,b表示除数,可以写成a÷b=b(a)(b≠0)

  9、能化成整数的假分数,它们的分子都是分母的倍数。反过来,分子是分母倍数的假分数,都能化成整数。(用分子除以分母)

  10、分子不是分母倍数的假分数,可以写成整数和真分数合成的数,通常叫做带分数。带分数是假分数的另一种形式。例如,4/3就可以看作是3/3(就是1)和1/3合成的数,读作一又三分之一。带分数都大于真分数,同时也都大于1。

  11、把分数化成小数的方法:用分数的分子除以分母。

  12、把小数化成分数的方法:如果是一位小数就写成十分之几,是两位小数就写成百分之几,是三位小数就写成千分之几,……

  13、把假分数转化成整数或带分数的方法:分子除以分母,如果分子是分母的倍数,可以化成整数;如果分子不是分母的倍数,可以化成带分数,除得的商作为带分数的整数部分,余数作为分数部分的分子,分母不变。

  14、把带分数化成假分数的方法:把整数乘分母加分子作为假分数的分子,分母不变。

  15、把不是0的整数化成假分数的方法:用整数与分母相乘的积作分子。

  16、大于7(3)而小于7(5)的分数有无数个;分数单位是7(1)只有7(4)一个。

  17、分数大小比较的应用题:工作效率大的快,工作时间小的快。

  18、求一个数是(占)另一个数的几分之几,用除法列算式计算。

  19、一个物体、一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。表示其中一份的数,叫做分数单位。一个分数的分母是几,它的分数单位就是几分之一。

  20、分母越大,分数单位越小,的分数单位是1/2

  21、举例说明一个分数的意义:3/7表示把单位“1”平均分成7份,表示这样的3份。还表示把3平均分成7份,表示这样的1份。3/7吨表示把1吨平均分成7份,表示这样的3份。还表示把3吨平均分成7份,表示这样的1份。

  小学三年级上册数学知识点归纳

  1、认识整千数(记忆:10个一千是一万)

  2、读数和写数(读数时写汉字写数时写阿拉伯数字)

  ①一个数的末尾不管有一个0或几个0,这个0都不读。

  ②一个数的中间有一个0或连续的两个0,都只读一个0。

  3、数的大小比较:

  ①位数不同的数比较大小,位数多的数大。

  ②位数相同的数比较大小,先比较这两个数的高位上的数,如果高位上的数相同,就比较下一位,以此类推。

  4、求一个数的近似数:

  记忆:看位的后面一位,如果是0—4则用四舍法,如果是5—9就用五入法。

  较大的三位数是位999,小的三位数是100,较大的四位数是9999,小的四位数是1000。较大的三位数比小的四位数小1。

  5、被减数是三位数的连续退位减法的运算步骤:

  ①列竖式时相同数位一定要对齐;

  ②减法时,哪一位上的数不够减,从前一位退1;如果前一位是0,则再从前一位退1。

  6、在做题时,我们要注意中间的0,因为是连续退位的,所以从百位退1到十位当10后,还要从十位退1当10,借给个位,那么十位只剩下9,而不是10。(两个三位数相加的和:可能是三位数,也有可能是四位数。)

  7、公式

  和=加数+另一个加数

  加数=和—另一个加数

  减数=被减数—差

  被减数=减数+差

  差=被减数—减数

  数学的概念

  数学概念是人脑对现实对象的数量关系和空间形式的本质特征的一种反映形式,即一种数学的思维形式。在数学中,作为一般的思维形式的判断与推理,以定理、法则、公式的方式表现出来,而数学概念则是构成它们的基础。正确理解并灵活运用数学概念,是掌握数学基础知识和运算技能、发展逻辑论证和空间想象能力的前提。

  0的基本概念

  0既不是正数也不是负数,而是正数和负数之间的一个数,且为正数和负数的分界线。当某个数X大于0(即X>0)时,称为正数;反之,当X小于0(即X<0)时,称为负数;而这个数X等于0时,这个数就是0。

  时分秒

  1、钟面上有3根针,它们是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。时针最短,秒针最长

  2、钟面上有12个数字,12个大格,60个小格;每两个数间是1个大格,也就是5个小格。

  3、时针走1大格是1小时;分针走1大格是5分钟,走1小格是1分钟;秒针走1大格是5秒钟,走1小格是1秒钟。

  4、分针走1小格,秒针正好走1圈,秒针走1圈是60秒,也就是1分钟。

  5、时针从一个数走到下一个数是1小时。分针从一个数走到下一个数是5分钟。秒针从一个数走到下一个数是5秒钟。

  6、公式。(每两个相邻的时间单位之间的进率是60)

  1时=60分;1分=60秒;60分=1时;

  7、常用的时间单位:时、分、秒、年、月、日、世纪等。

  1世纪=100年,1年=12个月

  分数的初步认识

  1、几分之一:把一个物体或一个图形平均分成几份,每一份就是它的几分之一。几分之几:把一个物体或一个图形平均分成几份,取其中的几份,就是这个物体或图形的几分之几。

  2、把一个整体平均分得的份数越多,它的每一份所表示的数就越小。

  3、比较大小的方法:

  ①分子相同,分母小的分数反而大,分母大的分数反而小。②分母相同,分子大的分数就大,分子小的分数就小。

  4、分数加减法:①同分母的分数加、减法的计算方法:同分母分数相加减,分母不变,和分子相加、减。②1减几分之几的计算方法:计算1减几分之几时,先把1写成与减数分母相同的分数,在计算。

  5、分数的意义:把一个整体平均分成若干份,表示几份就是这个整体的几分之几,所分的份数作分母,所取的份数作分子。

  6、求一个数是另一个数的几分之几是多少的计算方法:先用这个数除以分母(求出1份的数量是多少),再用商乘分子(求出其中几份是多少)

  测量

  1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。

  2、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。

  3、在计算长度时,只有相同的长度单位才能相加减。

  4、长度单位的关系式有:(每两个相邻的长度单位之间的进率是10)

  ①进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,10分米=1米,10厘米=1分米,10毫米=1厘米,

  ②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米

  ③进率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里

  5、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。

  6、相邻两个质量单位进率是1000。

  1吨=1000千克1千克=1000克1000千克=1吨1000克=1千克

  拓展内容:小学三年级下册数学知识点归纳

  两位数乘两位数

  1、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。

  2、口算乘法:整十、整百的数相乘,只需把前面数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。

  3、估算:18×22,可以先把因数看成整十、整百的数,再去计算。→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)

  4、有大约字样的一般要估算。

  5、凡是问够不够,能不能等的题目,都要三大步:①计算、②比较、③答题。→别忘了比较这一步。

  6、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘。

  7、相关公式:因数×因数=积积÷因数=另一个因数运算顺序:先乘除,再算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的运算。

  除数是一位数的除法

  1、只要是平均分就用(除法)计算。

  2、除数是一位数的竖式除法法则:

  (1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。

  (2)除到被除数的哪一位,就把商写在那一位上。

  (3)每求出一位商,余下的数必须比除数小。

  顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。

  3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5=6)

  4、笔算除法:

  (1)余数一定要比除数小。在有余数的除法中:最小的余数是1;的余数是除数减去1;最小的除数是余数加1;

  的被除数=商×除数+的余数;

  最小的被除数=商×除数+1;

  (2)除法验算:→用乘法

  没有余数的除法有余数的除法

  被除数÷除数=商被除数÷除数=商余数

  商×除数=被除数商×除数+余数=被除数

  被除数÷商=除数(被除数—余数)÷商=除数

  0除以任何不是0的数(0不能为除数)都等于0;

  0乘以任何数都得0;0加任何数都得任何数本身,任何数减0都得任何数本身。

  5、笔算除法顺序:确定商的位数,试商,检查,验算。

  6、笔算除法时,哪一位上不够商1,就添0占位。(位不够除,就向后退一位再商。)

  7、多位数除以一位数(判断商是几位数):

  用被除数位上的数跟除数进行比较,当被除数位上的数大于或等于除数时,被除数是几位数商就是几位数;当被除数位上的数小于除数时,商的位数就是被除数的位数减去1。

  年、月、日

  1、认识年、月、日。认识平年和闰年。

  2、记忆大小月的方法

  3、一年分四个季度:1、2、3月第一季度;

  4、5、6月第一季度;7、8、9月第一季度;10、11、12月第一季度;

  5、普通记时法与24时记时法的转换。

  6、简单的经过时间的计算方法。认识年、月、日1.1年有12个月。

  7、大月:有31天的月份是大月。大月有1月、3月、5月、7月、8月、10月、12月。

  8、小月:有30天的月份是大月。小月有4月、6月、9月、11月。

  9、记忆大小月的方法:(1)拳头记忆法。(2)歌诀记忆法。(3)单、双数记忆法。

  10、一年分四个季度:1、2、3月第一季度;4、5、6月第一季度;7、8、9月第一季度;10、11、12月第一季度;

  平年和闰年

  1、平年:2月有28天的月份是平年,平年有365天。

  2、闰年:2月有29天的月份是平年,平年有365天。

  3、平年和闰年的判断方法:一般情况下,公历年份除以4没有余数的是闰年,公历年份是整百数的,必须除以400没有余数才是闰年。

  24时计时法

  1、会用24时计时法表示时刻;会把普通计时法和24时计时法进行互化。

  如:普通计时法24时计时法:上午9时→9时;晚上9时→21时(9+12=21)普通计时法一定要加上“上午”、“下午”等前缀。

  2、【计算经过时间、开始时刻、结束时刻】【认识时间与时刻的区别】

  ①如:火车11:00出发,21:30到达,火车运行时间是(经过10小时30分钟),但这里不要写成(10:30)。正确的列式格式为:21时30分—11时=10时30分,不能用电子表的形式相减。

  ②再如:火车19时出发,第二天8时到达,火车运行时间是(13小时)。像这种跨越两天的,可以先计算第一天行驶了多长时间:24—19=5(时),再加上第二天行驶的8个小时:5+8=13(时);

  ③又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。

  3、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期四,制作5月份月历。

【小学三年级上册数学知识点归纳】相关文章:

小学数学知识点归纳总结03-06

数学知识点归纳03-13

数学知识点归纳06-21

数学矩形知识点归纳04-25

数学复习知识点归纳07-26

小学三年级上册英语知识点归纳04-12

人教版语文上册知识点归纳12-18

初一上册数学《统计》知识点归纳10-28

初三上册数学知识点归纳07-15