高三解析几何专题数学知识点

时间:2024-09-29 11:00:34 秀雯 数学 我要投稿
  • 相关推荐

高三解析几何专题数学知识点

  在日常过程学习中,看到知识点,都是先收藏再说吧!知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。相信很多人都在为知识点发愁,下面是小编为大家整理的高三解析几何专题数学知识点,欢迎大家分享。

高三解析几何专题数学知识点

  进一步,把问题用图形表示出来,需求直线x-2y=m所与求轨迹的切点。

  用判别式△=0→m=p,得切点Q(3p,p)点Q到直线的x-2y=0距离是-,即-=-→p=2

  直线过圆锥曲线的焦点

  复习导引:高考题解析部分大量的问题是直线与圆锥曲线相交,我们首先要抓住直线是否过圆锥曲线焦点?这部分第1至第5题阐明了直线过焦点的处理方法,第6题注又从反面说明在什么条件下才采用过焦点的方法。第4题引出了在什么条件下用两式相减可以简化推导过程。

  1. 已知椭圆-+-=1的左、右焦点分别为F1,F2。过F1的直线交椭圆于B,D两点,过F2的直线交椭圆于A,C两点,且AC⊥BD,垂足为P。

  (Ⅰ)设P点的坐标为(x0,y0),证明:-+-

  (Ⅱ)求四边形ABCD的面积的最小值。

  解(1)点P在以|F1F2|为直径的圆上,∴x02+y02=1,

  -+--+-

  =-=-1

  解:分析(2)SABCD=S△ABC+S△ADC

  =-|AC||BP|+-|AC||DP|

  =-|AC||BD|

  下面是如何求出|AC|=?|BD|=?

  由椭圆第二定义:

  |BD|=|BF2|+|DF2|

  又右准线方程为x=-=3,e=-=-=-|BF2|=(3-xB)e|DF2|=(3-xD)e|BD|=[6-(xB+xD)■过F2的直线lBDy=k(x-1),k≠0,k存在。

  |BD|=-■=-

  同理可求得:

  |AC|=-S=-(3k2+2)+(2k2+3)2-5(k2+1)2-

  SABCD-,当3k2+2=2k2+3,k2=1,k=±1。

  当k不存在,可设BD⊥x轴,这时kAC=0

  SABCD=-2-■=4-

  ∴(SABCD)min=-,此时k=±1

  注:本题第(2)用两点间距离公式求|AC|、|BD|也可行,计算量稍大,如果直线过圆锥曲线焦点,就要考虑椭圆或双曲线第二定义。

  三角形的知识点

  1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

  2、三角形的分类

  3、三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

  4、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

  5、中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

  6、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

  7、高线、中线、角平分线的意义和做法

  8、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

  9、三角形内角和定理:三角形三个内角的和等于180°

  推论1直角三角形的两个锐角互余

  推论2三角形的一个外角等于和它不相邻的两个内角和

  推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半

  10、三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

  11、三角形外角的性质

  (1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;

  (2)三角形的一个外角等于与它不相邻的两个内角和;

  (3)三角形的一个外角大于与它不相邻的任一内角;

  (4)三角形的外角和是360°。

  四边形(含多边形)知识点、概念总结

  一、平行四边形的定义、性质及判定

  1、两组对边平行的四边形是平行四边形。

  2、性质:

  (1)平行四边形的对边相等且平行

  (2)平行四边形的对角相等,邻角互补

  (3)平行四边形的对角线互相平分

  3、判定:

  (1)两组对边分别平行的四边形是平行四边形

  (2)两组对边分别相等的四边形是平行四边形

  (3)一组对边平行且相等的四边形是平行四边形

  (4)两组对角分别相等的四边形是平行四边形

  (5)对角线互相平分的四边形是平行四边形

  4、对称性:平行四边形是中心对称图形

  二、矩形的定义、性质及判定

  1、定义:有一个角是直角的平行四边形叫做矩形

  2、性质:矩形的四个角都是直角,矩形的对角线相等

  3、判定:

  (1)有一个角是直角的平行四边形叫做矩形

  (2)有三个角是直角的四边形是矩形

  (3)两条对角线相等的平行四边形是矩形

  4、对称性:矩形是轴对称图形也是中心对称图形。

  三、菱形的定义、性质及判定

  1、定义:有一组邻边相等的平行四边形叫做菱形

  (1)菱形的四条边都相等

  (2)菱形的对角线互相垂直,并且每一条对角线平分一组对角

  (3)菱形被两条对角线分成四个全等的直角三角形

  (4)菱形的面积等于两条对角线长的积的一半

  2、s菱=争6(n、6分别为对角线长)

  3、判定:

  (1)有一组邻边相等的平行四边形叫做菱形

  (2)四条边都相等的四边形是菱形

  (3)对角线互相垂直的平行四边形是菱形

  4、对称性:菱形是轴对称图形也是中心对称图形

  四、正方形定义、性质及判定

  1、定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形

  2、性质:

  (1)正方形四个角都是直角,四条边都相等

  (2)正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

  (3)正方形的一条对角线把正方形分成两个全等的等腰直角三角形

  (4)正方形的对角线与边的夹角是45°

  (5)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形

  3、判定:

  (1)先判定一个四边形是矩形,再判定出有一组邻边相等

  (2)先判定一个四边形是菱形,再判定出有一个角是直角

  4、对称性:正方形是轴对称图形也是中心对称图形

  五、梯形的定义、等腰梯形的性质及判定

  1、定义:一组对边平行,另一组对边不平行的四边形是梯形。两腰相等的梯形是等腰梯形。一腰垂直于底的梯形是直角梯形

  2、等腰梯形的性质:等腰梯形的两腰相等;同一底上的两个角相等;两条对角线相等

  3、等腰梯形的判定:两腰相等的梯形是等腰梯形;同一底上的两个角相等的梯形是等腰梯形;两条对角线相等的梯形是等腰梯形

  4、对称性:等腰梯形是轴对称图形

  六、三角形的中位线平行于三角形的第三边并等于第三边的一半;梯形的中位线平行于梯形的两底并等于两底和的一半。

  七、线段的重心是线段的中点;平行四边形的重心是两对角线的交点;三角形的重心是三条中线的交点。

  八、依次连接任意一个四边形各边中点所得的四边形叫中点四边形。

  九、多边形

  1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

  2、多边形的内角:多边形相邻两边组成的角叫做它的内角。

  3、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  4、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

  5、多边形的分类:分为凸多边形及凹多边形,凸多边形又可称为平面多边形,凹多边形又称空间多边形。多边形还可以分为正多边形和非正多边形。正多边形各边相等且各内角相等。

  6、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

  7、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

  8、公式与性质

  多边形内角和公式:n边形的内角和等于(n-2)·180°

  9、多边形外角和定理:

  (1)n边形外角和等于n·180°-(n-2)·180°=360°

  (2)边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°

  10、多边形对角线的条数:

  (1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形

  (2)n边形共有n(n-3)/2条对角线

  圆知识点、概念总结

  1、不在同一直线上的三点确定一个圆。

  2、垂径定理:垂直于弦的直径平分这条弦并且平分弦所对的两条弧

  推论1①(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

  ②弦的垂直平分线经过圆心,并且平分弦所对的两条弧

  ③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

  推论2圆的两条平行弦所夹的弧相等

  3、圆是以圆心为对称中心的中心对称图形

  4、圆是定点的距离等于定长的点的集合

  5、圆的内部可以看作是圆心的距离小于半径的点的集合

  6、圆的外部可以看作是圆心的距离大于半径的点的集合

  7、同圆或等圆的半径相等

  8、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆

  9、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等

  10、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。

  11、定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角

  12、①直线L和⊙O相交d

  ②直线L和⊙O相切d=r

  ③直线L和⊙O相离d>r

  13、切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线

  14、切线的性质定理:圆的切线垂直于经过切点的半径

  15、推论1经过圆心且垂直于切线的直线必经过切点

  16、推论2经过切点且垂直于切线的直线必经过圆心

  17、切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角

  18、圆的外切四边形的两组对边的和相等,外角等于内对角

  19、如果两个圆相切,那么切点一定在连心线上

  20、①两圆外离d>R+r

  ②两圆外切d=R+r

  ③两圆相交R-rr)

  ④两圆内切d=R-r(R>r)⑤两圆内含dr)

  21、定理:相交两圆的连心线垂直平分两圆的公共弦

  22、定理:把圆分成n(n≥3):

  (1)依次连结各分点所得的多边形是这个圆的内接正n边形

  (2)经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形

  23、定理:任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆

  24、正n边形的每个内角都等于(n-2)×180°/n

  25、定理:正n边形的半径和边心距把正n边形分成2n个全等的直角三角形

  26、正n边形的面积Sn=pnrn/2p表示正n边形的周长

  27、正三角形面积√3a/4a表示边长

  28、如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360°,因此k×(n-2)180°/n=360°化为(n-2)(k-2)=4

  29、弧长计算公式:L=n兀R/180

  30、扇形面积公式:S扇形=n兀R^2/360=LR/2

  31、内公切线长=d-(R-r)外公切线长=d-(R+r)

  如何养成良好的数学学习习惯

  制定计划,成为习惯

  无论是学习哪一科,明确的目标计划都是最基本的方法,也是要被大家说烂了的提高成绩的基本。

  数学也是一样,虽然公式多,定义多,图形多,但完全不影响制定数学的学习计划。学习是一个长久性的打算,因此在制定数学学习内容的过程中可以尽量的详细一点。

  比如说每天做多少道题,掌握多少个公式,记住几个定义等等。这样才是学好高中数学应该做的步骤。

  其次就是每天按照自己给自己的规定去做,不要想着偷懒,今天不爱做就留给明天,想着明天多做点补回来。

  这种想法是非常错误的,今天的任务就要今天完成,想着自己为了提高数学成绩,无论如何都要努力。

  预习与复习相结合

  预习帮助大家在数学课上对知识有一个大概的了解,也对老师要讲的内容有个先知,不至于惊讶惊讶老师接下来要讲什么。

  而复习就是对这一堂课的数学学习进行一个验收和反馈,检验自己是否学会数学老师讲的内容;反馈自己的学习成效,及时找到自己数学学习的问题以便及时解决。

  这样在学习新的数学知识的时候就不会带着之前留下来的疑问了。这对于学好高中数学,提高数学成绩非常有帮助。

  高质量的完成作业

  作业是一个很好查缺补漏的过程,因此同学们想要学好数学,就一定要认真完成作业。不要依赖不会就空着等数学老师上课讲这样的想法,这样只会退步。

  数学学习就是要不断的动脑解决问题,所以作业要完成,还要高质量的去完成,这样才能不断提高自己的能力。

  不要空太多的题不写,就只等着老师公布正确答案和解题过程,这样一来,需要自己消化的数学问题就因为自己的懒惰变得越来越多,以至于影响之后的学习效率。

  数学最常用且非常实用的学习方法

  1、预习很重要:

  往往被忽略,理由:没时间,看不懂,不必要等。预习是学习的必要过程,还是提高自学能力的好方法。

  2、听讲有学问:

  听分析、听思路、听应用,关键内容一字不漏,注意记录。

  3、做好错题本:

  每个会学习的学生都会有。最好再加个“好题本”。发现许多同学没有错题本,或者是只做不用。这样学习效果都不好。

  4、用好课外书:

  正确认识网络课程和课外书籍,是副食,是帮助吸收的良药,绝对不是课堂学习的替代品。

  5、注意总结和反思:

  知识点、解题方法和技巧、经验和教训。

  6、接受数学思想方法的指导:

  要注意数学思想和方法的指导,站得高,才能看得远。

  关于数学常见误区有哪些

  1、被动学习

  许多同学进入高中后,还像初中那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权.表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”,没有真正理解所学内容。

  2、学不得法

  老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

  3、不重视基础

  一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。

  4、进一步学习条件不具备

  高中数学与初中数学相比,知识的深度、广度,能力要求都是一次飞跃.这就要求必须掌握基础知识与技能为进一步学习作好准备。高中数学很多地方难度大、方法新、分析能力要求高。

  如二次函数在闭区间上的最值问题,函数值域的求法,实根分布与参变量方程,三角公式的变形与灵活运用,空间概念的形成,排列组合应用题及实际应用问题等。客观上这些观点就是分化点,有的内容还是高初中教材都不讲的脱节内容,如不采取补救措施,查缺补漏,分化是不可避免的。

【高三解析几何专题数学知识点】相关文章:

高三数学数列知识点05-26

关于高三数学的教案:平面向量与解析几何交汇的综合问题04-04

高三数学复习知识点归纳03-08

高三数学知识点总结08-26

高三数学常用公式的知识点06-08

高三数学《向量的向量积》知识点06-08

高三数学抽样方法知识点复习07-24

高三数学直线与圆知识点复习07-19

高三高考数学知识点05-24

高三数学立体几何知识点归纳07-27