七年级数学下册期末知识点

时间:2023-07-11 12:16:12 登绮 数学 我要投稿

七年级数学下册期末知识点

  漫长的学习生涯中,很多人都经常追着老师们要知识点吧,知识点是指某个模块知识的重点、核心内容、关键部分。为了帮助大家掌握重要知识点,以下是小编帮大家整理的七年级数学下册期末知识点,希望能够帮助到大家。

七年级数学下册期末知识点

  七年级数学下册期末知识点

  第一章 生活中的变量

  一、变量、自变量与因变量

  两个变量x与y,y随x的改变而改变,那么x是自变量(先变的量),y是因变量(后变的量)。

  二、变量之间的表示方法:

  ①列表法

  ②关系式法:能精确地反映自变量与因变量之间数值的对应关系。

  ③图象法:用水平方向的数轴(横轴)上的点表示自变量,用坚直方向的数轴(纵轴)表示因变量。

  第二章 生活中的轴对称

  一、轴对称图形与轴对称

  ①一个图形沿某一条直线对折,直线两旁的部分能完成重合的图形叫做轴对称图形。这条直线叫做对称轴。

  ②两个图形沿某一条直线折叠,这两个图形能完全重合,就说这两个图形关于这条直线成轴对称。这条直线叫做对称轴。

  ③常见的轴对称图形:线段(两条对称轴),角,长方形,正方形,等腰三角形,等边三角形,等腰梯形,圆,扇形。

  二、角平分线的性质:角平分线上的点到角两边的距离相等。

  ∵ ∠1=∠2 PB⊥OB PA⊥OA

  ∴ PB=PA

  三、线段垂直平分线:

  ①概念:垂直且平分线段的.直线叫做这条线段的垂直平分线。

  ②性质:线段垂直平分线上的点到线段两个端点的距离相等。

  ∵ OA=OB CD⊥AB

  ∴ PA=PB

  四、等腰三角形性质: (有两条边相等的三角形叫做等腰三角形)

  ①等腰三角形是轴对称图形; (一条对称轴)

  ②等腰三角形底边上中线,底边上的高,顶角的平分线重合; (三线合一)

  ③等腰三角形的两个底角相等。 (简称:等边对等角)

  五、在一个三角形中,如果有两个角相等,那么它所对的两条边也相等。(简称:等角对等边)

  六、等边三角形的性质:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有性质。

  ① 等边三角形的三条边相等,三个角都等于60;

  ②等边三角形有三条对称轴。

  七、轴对称的性质:

  ① 关于某条直线对称的两个图形是全等形;

  ②对应线段、对应角相等;

  ③ 对应点的连线被对称轴垂直且平分;

  ④对应线段如果相交,那么交点在对称轴上。

  八、镜子改变了什么:

  1、物与像关于镜面成轴对称;(分清左右对称与上下对称)

  2、常见的问题:

  ①物体成像问题;

  ②数字与字母成像问题;

  ③时钟成像问题

  第三章 概率

  一、概率:反映事件发生可能性大小的数。

  二、事件的分类

  三、游戏是否公平:双方事件发生的概率是否相等。

  七年级数学下册期末知识点

  一、有理数

  一.正数和负数

  ⒈正数和负数的概念

  负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数

  注意:

  ①字母a可以表示任意数,当a表示正数时,—a是负数;当a表示负数时,—a是正数;当a表示0时,—a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,—a就不能做出简单判断)

  ②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。

  2.具有相反意义的量

  若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:—8℃;支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数: 比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。

  3.0表示的意义

  ⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;

  ⑵0是正数和负数的分界线,0既不是正数,也不是负数。

  二.有理数

  1.有理数的概念

  ⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)

  ⑵正分数和负分数统称为分数

  ⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

  理解:只有能化成分数的数才是有理数。

  ①π是无限不循环小数,不能写成分数形式,不是有理数。

  ②有限小数和无限循环小数都可化成分数,都是有理数。

  注意:引入负数以后,奇数和偶数的范围也扩大了,像—2,—4,—6,—8?也是偶数,—1,—3,—5?也是奇数。

  2.凡能写成q(p,q为整数且p?0)形式的数,都是有理数。正整数、0、负整数统称整数;正分数、负p分数统称分数;整数和分数统称有理数。注意:0即不是正数,也不是负数;—a不一定是负数,+a也不一定是正数;不是有理数;

  (一)正负数

  1.正数:大于0的数。

  2.负数:小于0的数。

  3.0即不是正数也不是负数。

  4.正数大于0,负数小于0,正数大于负数。

  (二)有理数

  1.有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:π)

  2.整数:正整数、0、负整数,统称整数。

  3.分数:正分数、负分数。

  (三)数轴

  1.数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位长度,以便在数轴上取点。)

  2.数轴的三要素:原点、正方向、单位长度。

  3.相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。

  4.绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。

  (四)有理数的加减法

  1.先定符号,再算绝对值。

  2.加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。

  3.加法交换律:a+b=b+a两个数相加,交换加数的位置,和不变。

  4.加法结合律:(a+b)+c=a+(b+c)三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

  5.a?b=a+(?b)减去一个数,等于加这个数的相反数。

  (五)有理数乘法(先定积的符号,再定积的大小)

  1.同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

  2.乘积是1的两个数互为倒数。

  3.乘法交换律:ab=ba

  4.乘法结合律:(ab)c=a(bc)

  5.乘法分配律:a(b+c)=ab+ac

  (六)有理数除法

  1.先将除法化成乘法,然后定符号,最后求结果。

  2.除以一个不等于0的数,等于乘这个数的倒数。

  3.两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。

  (七)乘方

  1.求n个相同因数的积的运算,叫做乘方。写作an。(乘方的结果叫幂,a叫底数,n叫指数)

  2.负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。

  3.同底数幂相乘,底不变,指数相加。

  4.同底数幂相除,底不变,指数相减。

  (八)有理数的加减乘除混合运算法则

  1.先乘方,再乘除,最后加减。

  2.同级运算,从左到右进行。

  3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

  (九)科学记数法、近似数、有效数字。

  二、整式

  (一)整式

  1.整式:单项式和多项式的.统称叫整式。

  2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。

  3.系数;一个单项式中,数字因数叫做这个单项式的系数。

  4.次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。

  5.多项式:几个单项式的和叫做多项式。

  6.项:组成多项式的每个单项式叫做多项式的项。

  7.常数项:不含字母的项叫做常数项。

  8.多项式的次数:多项式中,次数的项的次数叫做这个多项式的次数。

  9.同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。

  10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。

  (二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。

  1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

  七年级数学下册期末知识点

  一.整式

  1.单项式

  ①由数与字母的积组成的代数式叫做单项式.单独一个数或字母也是单项式.

  ②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.

  ③一个单项式中,所有字母的指数和叫做这个单项式的次数.

  2.多项式

  ①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.

  ②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.

  3.整式单项式和多项式统称为整式.

  二.整式的加减

  1.整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.

  2.括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.

  三.同底数幂的乘法

  同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

  ①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

  ②指数是1时,不要误以为没有指数;

  ③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

  ④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);

  ⑤公式还可以逆用:(m、n均为正整数)

  四.幂的乘方与积的乘方

  1.幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.

  2..

  3.底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,

  如将(-a)3化成-a3

  4.底数有时形式不同,但可以化成相同.

  5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零).

  6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数).

  7.幂的乘方与积乘方法则均可逆向运用.

  五.同底数幂的`除法

  1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).

  2.在应用时需要注意以下几点:

  ①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.

  ②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.

  ③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;

  七年级数学下册期末知识点

  一、相交线两条直线相交,形成4个角。

  1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。性质是对顶角相等。

  ①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。具有这种关系的.两个角,互为邻补角。如:∠1、∠2。

  ②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。如:∠1、∠3。

  ③对顶角相等。

  二、垂线

  1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。

  2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。

  3.垂足:两条垂线的交点叫垂足。

  4.垂线特点:过一点有且只有一条直线与已知直线垂直。

  七年级数学下册期末知识点

  二元一次方程组:

  (1)定义

  二元一次方程是指含有两个未知数(例如x和y),并且所含未知数的项的次数都是1的方程。两个结合在一起的共含有两个未知数的一次方程叫二元一次方程组。

  (2)解二元一次方程的方法

  ①代入消元法

  ②加减消元法

  不等式与不等式组:

  (1)不等式

  用不等号(,≥,≤,≠)连接的式子叫做不等式。

  (2)不等式的性质

  ①对称性;

  ②传递性;

  ③加法单调性,即同向不等式可加性;

  ④乘法单调性;

  ⑤同向正值不等式可乘性;

  ⑥正值不等式可乘方;

  ⑦正值不等式可开方;

  (3)一元一次不等式

  用不等号连接的,含有一个未知数,并且未知数的次数都是1,未知数的.系数不为0,左右两边为整式的式子叫做一元一次不等式。

  (4)一元一次不等式组

  一元一次不等式组是由几个含有同一个未知数的一元一次不等式组成的不等式组。

  七年级数学下册期末知识点

  1、“三线八角”

  ①如何由线找角:一看线,二看型。

  同位角是“F”型;

  内错角是“Z”型;

  同旁内角是“U”型。

  ②如何由角找线:组成角的三条线中的'公共直线就是截线。

  2、平行公理:

  如果两条直线都和第三条直线平行,那么这两条直线也平行。

  简述:平行于同一条直线的两条直线平行。

  补充定理:

  如果两条直线都和第三条直线垂直,那么这两条直线也平行。

  简述:垂直于同一条直线的两条直线平行。

  3、平行线的判定和性质:

  判定定理性质定理

  条件结论条件结论

  同位角相等两直线平行两直线平行同位角相等

  内错角相等两直线平行两直线平行内错角相等

  同旁内角互补两直线平行两直线平行同旁内角互补

  4、图形平移的性质:

  图形经过平移,连接各组对应点所得的线段互相平行(或在同一直线上)并且相等。

  七年级数学下册期末知识点

  平面直角坐标系:

  1、含有两个数的词来表示一个确定个位置,其中两个数各自表示不同的意义,我们把这种有顺序的两个数组成的数对,叫做有序数对,记作(a,b)

  2、数轴上的点可以用一个数来表示,这个数叫做这个点的坐标。

  3、在平面内画两条互相垂直,并且有公共原点的数轴。这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。平面直角坐标系有两个坐标轴,其中横轴为X轴,取向右方向为正方向;纵轴为Y轴,取向上为正方向。坐标系所在平面叫做坐标平面,两坐标轴的公共原点叫做平面直角坐标系的原点。X轴和Y轴把坐标平面分成四个象限,右上面的叫做第一象限,其他三个部分按逆时针方向依次叫做第二象限、第三象限和第四象限。象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。一般情况下,x轴和y轴取相同的单位长度。

  4、特殊位置的`点的坐标的特点:

  (1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。

  (2)第一、三象限角平分线上的点横、纵坐标相等;第二、四象限角平分线上的点横、纵坐标互为相反数。

  (3)在任意的两点中,如果两点的横坐标相同,则两点的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。

  5、点到轴及原点的距离

  点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;

  在平面直角坐标系中对称点的特点:

  1、关于x成轴对称的点的坐标,横坐标相同,纵坐标互为相反数。

  2、关于y成轴对称的点的坐标,纵坐标相同,横坐标互为相反数。

  3、关于原点成中心对称的点的坐标,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数。

  各象限内和坐标轴上的点和坐标的规律:

  第一象限:(+,+)第二象限:(-,+)第三象限:(-,-)第四象限:(+,-)

  x轴正方向:(+,0)x轴负方向:(-,0)y轴正方向:(0,+)y轴负方向:(0,-)

  x轴上的点纵坐标为0,y轴横坐标为0。

【七年级数学下册期末知识点】相关文章:

七年级数学下册期末备考知识点07-27

初三数学下册期末知识点归纳07-26

高二数学下册期末知识点参考07-23

苏教版七年级数学下册期末知识点汇总07-21

高一数学下册期末复习知识点07-23

初一数学下册实数期末备考知识点07-24

七年级政治下册期末的知识点归纳09-11

七年级数学下册知识点07-27

七年级下册数学知识点02-10