数学 百文网手机站

勾股定理与平方根的数学知识点

时间:2023-01-02 15:28:51 数学 我要投稿
  • 相关推荐

勾股定理与平方根的数学知识点

  在日常过程学习中,看到知识点,都是先收藏再说吧!知识点就是学习的重点。为了帮助大家更高效的学习,下面是小编收集整理的勾股定理与平方根的数学知识点,欢迎阅读与收藏。

勾股定理与平方根的数学知识点

  一、勾股定理

  勾股定理:直角三角形两直角边的平方和等于斜边的平方。

  我国古代把直角三角形中,较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。结论为:勾三股四弦五。

  a2+b2=c2

  1、 如果三角形的三边长a、b、c满足a+b=c,那么这个三角形是直角三角形。

  2、 满足a+b=c的3个正整数a、b、c称为勾股数。(例如,3、4、5是一组勾股数)。利用勾股数可以构造直角三角形。

  二、平方根

  1、定义一般地,如果一个数的平方等于a,那么这个数叫做a的平方根,也称为二次方根。也就是说,如果x2=a,那么x就叫做a的平方根。

  2、一个正数有2个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根。

  3、 求一个数a的平方根的运算,叫做开平方。

  4、 正数a有两个平方根,其中正的平方根,也叫做a的算术平方根。

  例如:4的平方根是2,其中2叫做4的算术平方根,记作 =2;2的平方根是 其中 2的算术平方根。

  0只有一个平方根,0的平方根也叫做0的算术平方根,即

  三、立方根

  1、定义一般地,如果一个数的立方等于a,那么这个数叫做a的立方根,也称为三次方根。也就是说,如果x=a,那么x就叫做a的立方根,数a的立方根记作 ,读作三次根号a。

  2、求一个数a的立方根的运算,叫做开立方。

  3、正数的立方根是正数,负数的立方根是负数,0的立方根是0。

  四、实数

  1、无限不循环小数称为无理数。

  2、有理数和无理数统称为实数。

  3、每一个实数都可以用数轴上的一个点来表示,反之,数轴上的每一个点都表示一个实数,实数与数轴上的点是一一对应的。

  五、近似数与有效数字

  1、例如,本册数学课本约有100千字,这里100是一个近似似数。

  2、对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。

  初二数学勾股定理知识点

  勾股定理

  在任何一个直角三角形(Rt△)中(等腰直角三角形也算在内),两条直角边的长度的平方和等于斜边长度的平方,这就叫做勾股定理。即勾的长度的平方加股的长度的平方等于弦的长度的平方。[1]如果用a,b,c分别表示直角三角形的两条直角边和斜边,那么a+b=c.

  简介

  勾股定理是余弦定理的一个特例。这个定理在中国又称为“商高定理”(相传大禹治水时,就会运用此定理来解决治水中的计算问题),在外国称为“毕达哥拉斯定理”或者“百牛定理”。(毕达哥拉斯发现了这个定理后,即斩了百头牛作庆祝,因此又称“百牛定理”)。

  他们发现勾股定理的时间都比中国晚(中国是最早发现这一几何宝藏的国家)。目前初二学生开始学习,教材的证明方法大多采用赵爽弦图,证明使用青朱出入图。

  勾股定理是一个基本的几何定理,是数形结合的纽带之一。

  直角三角形两直角边的平方和等于斜边的平方。如果用a、b和c分别表示直角三角形的两直角边和斜边,那么a^2+b^2=c^2。

  勾股定理内容

  直角三角形(等腰直角三角形也算在内)两直角边(即“勾”“股”短的为勾,长的为股)边长平方和等于斜边(即“弦”)边长的平方。

  也就是说设直角三角形两直角边为a和b,斜边为c,那么a的平方+b的平方=c的平方a+b=c。

  勾股定理现发现约有500种证明方法,是数学定理中证明方法最多的定理之一。

  中国古代著名数学家商高说:“若勾三,股四,则弦五。”它被记录在了《九章算术》中。

  推广

  1、如果将直角三角形的斜边看作二维平面上的向量,将两直角边看作在平面直角坐标系坐标轴上的投影,则可以从另一个角度考察勾股定理的意义。即,向量长度的平方等于它在其所在空间一组正交基上投影长度的平方之和。

  2.勾股定理是余弦定理的特殊情况。

  初二数学算术平方根知识点

  算术平方根的`双重非负性

  1.√a中a≧0

  2.√a≧0

  算术平方根产生 根号(即算术平方根)的产生源于正方形的对角线长度“根号二”,这个 “根号二”的发现 一度引起了毕达哥拉斯学派的恐慌。因为按当时的权威解释(也就是毕达哥拉斯学派的学说),世界的一切事物都可以用有理数代表。

  对于这个无理数“根号二”,最终人们选取了用根号来表示

  算术平方根举例

  9的平方根为±3 ;9的算术平方根为3,正数的平方根都是前面加±,算术平方根全部都是正数。

  算术平方根辨析

  算术平方根和平方根是大家学习实数接触最多的概念,两者密不可分。可对于初学者来说是对“孪生杀手”,很容易在解题过程中产生错误。算术平方根和平方根到底有哪些区别与联系呢?

  一、 两者区别

  1、定义不同:⑴一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根(arithmetic square root)。⑵一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根(square root)。这就是说,如果x2=a,那么x叫做a的平方根。

  2、表示方法不同:⑴a的算术平方根记为√a ,读作“根号a”,a叫做被开方数(radicand)。⑵a的平方根记为±√a,读作“正负根号a”,其中a叫做被开方数。

  3、个数不同:从形式上看,二者的符号主体相似,但是一个数的平方根要在其算术平方根的前面写上“±”。这也正好说明了一个正数和零的算术平方根有且只有一个,而一个正数却有两个互为相反数的平方根。零只有一个平方根

  二、 两者联系

  1、前提条件相同:算术平方根和平方根存在的前提条件都是“只有非负数才有算术平方根和平方根”。

  2、存在包容关系:平方根包含了算术平方根,因为一个正数的算术平方根只是其两个平方根中的一个。

  3、0的算术平方根和平方根相同,都是0。

【勾股定理与平方根的数学知识点】相关文章:

初二数学《勾股定理与平方根》知识点整理07-07

数学勾股定理知识点考点07-27

初二数学平方根知识点01-25

初二数学平方根的知识点07-24

算术平方根的数学知识点01-26

初二数学勾股定理知识点08-10

数学知识点之勾股定理07-22

初二数学勾股定理的知识点07-09

初二数学算术平方根知识点07-03