高二数学平面向量知识点归纳
在平平淡淡的学习中,说到知识点,大家是不是都习惯性的重视?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。还在为没有系统的知识点而发愁吗?以下是小编为大家整理的高二数学平面向量知识点归纳,仅供参考,希望能够帮助到大家。
高二数学平面向量知识点归纳1
1、基本概念:
向量的定义、向量的模、零向量、单位向量、相反向量、共线向量、相等向量。
2、加法与减法的代数运算:
(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2)。
向量加法与减法的几何表示:平行四边形法则、三角形法则。
向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);
3、实数与向量的积:
实数与向量的积是一个向量。
(1)||=||
(2)当a0时,与a的方向相同;当a0时,与a的方向相反;当a=0时,a=0。
两个向量共线的充要条件:
(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=。
(2)若=(),b=()则‖b。
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数,,使得=e1+e2。
4、P分有向线段所成的比:
设P1、P2是直线上两个点,点P是上不同于P1、P2的任意一点,则存在一个实数使=,叫做点P分有向线段所成的比。
当点P在线段上时,当点P在线段或的延长线上时,
分点坐标公式:若=;的坐标分别为(),(),();则(—1),中点坐标公式:。
5、向量的数量积:
(1)向量的夹角:
已知两个非零向量与b,作=,=b,则AOB=()叫做向量与b的夹角。
(2)两个向量的数量积:
已知两个非零向量与b,它们的夹角为,则b=|||b|cos。
其中|b|cos称为向量b在方向上的投影。
(3)向量的数量积的性质:
若=(),b=()则e=e=||cos(e为单位向量);
bb=0(,b为非零向量);||=;
cos==。
(4)向量的数量积的运算律:
b=b()b=(b)=(b);(+b)c=c+bc。
6、主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。
高二数学平面向量知识点归纳2
1.有向线段的定义
线段的端点A为始点,端点B为终点,这时线段AB具有射线AB的方向.像这样,具有方向的线段叫做有向线段.记作:.
2.有向线段的三要素:有向线段包含三个要素:始点、方向和长度.
3.向量的定义:(1)具有大小和方向的量叫做向量.向量有两个要素:大小和方向.
(2)向量的表示方法:①用两个大写的英文字母及前头表示,有向线段来表示向量时,也称其为向量.书写时,则用带箭头的小写字母,,,来表示.
4.向量的长度(模):如果向量=,那么有向线段的长度表示向量的大小,叫做向量的长度(或模),记作||.
5.相等向量:如果两个向量和的方向相同且长度相等,则称和相等,记作:=.
6.相反向量:与向量等长且方向相反的向量叫做的.相反向量,记作:-.
7.向量平行(共线):如果两个向量方向相同或相反,则称这两个向量平行,向量平行也称向量共线.向量平行于向量,记作//.规定://.
8.零向量:长度等于零的向量叫做零向量,记作:.零向量的方向是不确定的,是任意的.由于零向量方向的特殊性,解答问题时,一定要看清题目中是零向量还是非零向量.
9.单位向量:长度等于1的向量叫做单位向量.
10.向量的加法运算:
(1)向量加法的三角形法则
11.向量的减法运算
12、两向量的和差的模与两向量模的和差之间的关系
对于任意两个向量,,都有|||-|||||+||.
13.数乘向量的定义:
实数和向量的乘积是一个向量,这种运算叫做数乘向量,记作.
向量的长度与方向规定为:(1)||=|
(2)当0时,与方向相同;当0时,与方向相反.
(3)当=0时,当=时,=.
14.数乘向量的运算律:(1))=(结合律)
(2)(+)=+(第一分配律)(3)(+)=+.(第二分配律)
15.平行向量基本定理
如果向量,则//的充分必要条件是,存在唯一的实数,使得=.
如果与不共线,若m=n,则m=n=0.
16.非零向量的单位向量:非零向量的单位向量是指与同向的单位向量,通常记作.
=||,即==(,)
17.线段中点的向量表达式
点M是线段AB的中点,O是平面内任意一点,则=(+).
18.平面向量的直角坐标运算:如果=(a1,a2),=(b1,b2),则
+=(a1+b1,a2+b2);-=(a1-b1,a2-b2);=(a1,a2).
19.利用两点表示向量:如果A(x1,y1),B(x2,y2),则=(x2-x1,y2-y1).
20.两向量相等和平行的条件:若=(a1,a2),=(b1,b2),则
=a1=b1且a2=b2.
//a1b2-a2b1=0.特别地,如果b10,b20,则//=.
21.向量的长度公式:若=(a1,a2),则||=.
22.平面上两点间的距离公式:若A(x1,y1),B(x2,y2),则||=.
23.中点公式
若点A(x1,y1),点B(x2,y2),点M(x,y)是线段AB的中点,则x=,y=.
24.重心公式
在△ABC中,若A(x1,y1),B(x2,y2),A(x3,y3),,△ABC的重心为G(x,y),则
x=,y=
25.(1)两个向量夹角的取值范围是[0,p],即0,p.
当=0时,与同向;当=p时,与反向
当=时,与垂直,记作.
(3)向量的内积定义:=||||cos.
其中,||cos叫做向量在向量方向上的正射影的数量.规定=0.
(4)内积的几何意义
与的内积的几何意义是的模与在方向上的正射影的数量,或的模与在方向上的正射影数量的乘积
当0,90时,0;=90时,
90时,0.
26.向量内积的运算律:
(1)交换率
(2)数乘结合律
(3)分配律
(4)不满足组合律
27.向量内积满足乘法公式
29.向量内积的应用:
高二数学平面向量知识点归纳3
1.平面向量的数量积
平面向量数量积的定义
已知两个非零向量a和b,它们的夹角为,把数量|a||b|cos叫做a和b的数量积(或内积),记作ab。即ab=|a||b|cos,规定0a=0.
2.向量数量积的运算律
(1)ab=ba
(2)(a)b=(ab)=a(b)
(3)(a+b)c=ac+bc
[探究]根据数量积的运算律,判断下列结论是否成立。
(1)ab=ac,则b=c吗?
(2)(ab)c=a(bc)吗?
提示:(1)不一定,a=0时不成立,
另外a0时,ab=ac.由数量积概念可知b与c不能确定;
(2)(ab)c=a(bc)不一定相等.
(ab)c是c方向上的向量,而a(bc)是a方向上的向量,当a与c不共线时它们必不相等.
高二数学平面向量知识点归纳4
【考纲解读】
1、理解平面向量的概念与几何表示、两个向量相等的含义;掌握向量加减与数乘运算及其意义;理解两个向量共线的含义,了解向量线性运算的性质及其几何意义
2、了解平面向量的基本定理及其意义;掌握平面向量的正交分解及其坐标表示;会用坐标表示平面向量的加法、减法与数乘运算;理解用坐标表示的平面向量共线的条件
3、理解平面向量数量积的含义及其物理意义;了解平面向量数量积与向量投影的关系;掌握数量积的坐标表达式,会进行平面向量数量积的运算;能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系
【考点预测】
高考对平面向量的考点分为以下两类:
(1)考查平面向量的概念、性质和运算,向量概念所含内容较多,如单位向量、共线向量、方向向量等基本概念和向量的加、减、数乘、数量积等运算,高考中或直接考查或用以解决有关长度,垂直,夹角,判断多边形的形状等,此类题一般以选择题形式出现,难度不大
(2)考查平面向量的综合应用。平面向量常与平面几何、解析几何、三角等内容交叉渗透,使数学问题的情境新颖别致,自然流畅,此类题一般以解答题形式出现,综合性较强
【要点梳理】
1、向量的加法与减法:掌握平行四边形法则、三角形法则、多边形法则,加法的运算律;
2、实数与向量的乘积及是一个向量,熟练其含义;
3、两个向量共线的条件:平面向量基本定理、向量共线的坐标表示;
4、两个向量夹角的范围是:[0,π]
5、向量的数量积:熟练定义、性质及运算律,向量的模,两个向量垂直的充要条件。
【高二数学平面向量知识点归纳】相关文章:
高二数学平面向量的知识点归纳01-01
高二数学关于平面向量的知识点归纳11-20
高二数学平面向量常考知识点归纳01-09
高二数学平面向量知识点02-22
高二数学平面向量知识点整理01-26
高二数学平面向量知识点梳理01-26
数学平面向量知识点11-12
高二数学《平面向量的线性运算》的知识点12-13
平面向量的数学知识点01-02