五年级上册数学第六单元的知识点归纳
上学的时候,大家最熟悉的就是知识点吧?知识点就是学习的重点。想要一份整理好的知识点吗?下面是小编精心整理的五年级上册数学第六单元的知识点归纳,欢迎阅读,希望大家能够喜欢。
五年级上册数学第六单元的知识点归纳 篇1
一、知识梳理:
(一)认知基础: 用列表和画图的策略解决问题,对解决问题的策略的价值已经有了一些具体的体验和认识。
(二)主要内容:
1.认识列举法
2.学会列举
3.学会不同的列举
(三)学习目标:
1.经历用“一一列举”的策略解决一些简单实际问题的过程,能通过有条理的列举分析有关实际问题中的数量关系,并获得问题的答案;
2.在解决实际问题过程的反思和交流中,感受一一列举策略的特点和价值,进一步发展思维的条理性和严密性;
3.进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题成功的体验,提高学好数学的信心;
4.体验数学与日常生活的密切联系,认识到许多实际问题可以借助数学方法来解决。
(四)学习方法:
1.利用已有的经验,结合自己动手操作、同学交流,认识列举的策略,并在反思解题的共同特点和注意点时,感知本课的重点——有序思考。
2.借助表格理解基本的数量关系、发现数量的变化趋势。学习有序思考时,可分三个层次展开:第一层,整理信息;第二层,有序列举,注意做到不重复、不遗漏,认识到列举时要有条理、有序,体验有序的重要性,增强思维的条理性和严密性;第三层,反思提升。
(五)学习重点:
1.能用“一一列举”的策略解决实际问题;
2.能根据策略的需要,运用“一一列举”的策略分析有关问题之间的数量关系,并有效的解决问题。
(六)重点提示:
1.认识列举法,并懂得列举法的特点 课本例1提出两个问题,:一个是求“一共有多少种不同的围法?”一个是要求比较长方形的长、宽和面积,再说说有什么发现?在解决第一个问题时,要认识“一一列举法”,并懂得列举法的特点。
2.学会正确的列举法 课本例2也提出两个问题:一个是求“有多少种不同的订阅方法?”一个是说明“要得到全部答案,列举时要注意什么?”在解决这两个问题的过程中,要注意使用正确的列举方法、方式。
3.学会不同的列举法 课本例3的问题是“有多少种不同的安排?”在解决这个问题中,要懂得不同的方法进行列举,从而进一步认识并掌握不同的列举方法,这类问题特别要注意考虑“0”的情况。
4.在运用“一一列举”的策略解决问题的过程,能通过不遗漏、不重复的列举找到符合要求的所有答案。学会有条理的、全面的思考,并清晰地表达自己的想法。
五年级上册数学第六单元的知识点归纳 篇2
1、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
长方体特点:
(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。
(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。
2、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。
正方体特点:
(1)正方体有12条棱,它们的长度都相等。
(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。
(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
相同点
不同点
面棱
长方体
都有6个面,12条棱,8个顶点。
6个面都是长方形。
(有可能有两个相对的面是正方形)。
相对的棱的长度都相等
正方体
6个面都是正方形。
12条棱都相等。
3、长方体、正方体有关棱长计算公式:
长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4
L=(a+b+h)×4
长=棱长总和÷4-宽-高
a=L÷4-b-h
宽=棱长总和÷4-长-高
b=L÷4-a-h
高=棱长总和÷4-长-宽
h=L÷4-a-b
正方体的棱长总和=棱长×12
L=a×12
正方体的棱长=棱长总和÷12
a=L÷12
4、长方体或正方体6个面和总面积叫做它的表面积。
长方体的表面积=(长×宽+长×高+宽×高)×2
S=2(ab+ah+bh)
无底(或无盖)
长方体表面积=长×宽+(长×高+宽×高)×2
S=2(ab+ah+bh)-ab
S=2(ah+bh)+ab
无底又无盖长方体表面积=(长×高+宽×高)×2
S=2(ah+bh)
贴墙纸
正方体的表面积=棱长×棱长×6 S=a×a×6用字母表示:S= 6a2
生活实际:
油箱、罐头盒等都是6个面
游泳池、鱼缸等都只有5个面
水管、烟囱等都只有4个面。
注意1:用刀分开物体时,每分一次增加两个面。(表面积相应增加)
注意2:长方体或正方体的长、宽、高同时扩大几倍,表面积会扩大倍数的平方倍。
(如长、宽、高各扩大2倍,表面积就会扩大到原来的4倍)。
5、物体所占空间的大小叫做物体的体积。
长方体的体积=长×宽×高V=abh
长=体积÷宽÷高a=V÷b÷h
宽=体积÷长÷高b=V÷a÷h
高=体积÷长÷宽h= V÷a÷b
正方体的体积=棱长×棱长×棱长
V=a×a×a = a3
读作“a的立方”表示3个a相乘,(即a·a·a)
长方体或正方体底面的面积叫做底面积。
长方体(或正方体)的体积=底面积×高
用字母表示:V=S h(横截面积相当于底面积,长相当于高)。
注意:一个长方体和一个正方体的棱长总和相等,但体积不一定相等。
6、箱子、油桶、仓库等所能容纳物体的.体积,通常叫做他们的容积。
固体一般就用体积单位,计量液体的体积,如水、油等。
常用的容积单位有升和毫升也可以写成L和ml。
1升=1立方分米
1毫升=1立方厘米
1升=1000毫升
(1L = 1dm3 1ml = 1cm3)
长方体或正方体容器容积的计算方法,跟体积的计算方法相同。
但要从容器里面量长、宽、高。(所以,对于同一个物体,体积大于容积。)
注意:长方体或正方体的长、宽、高同时扩大几倍,体积就会扩大倍数的立方倍。
(如长、宽、高各扩大2倍,体积就会扩大到原来的8倍)。
x形状不规则的物体可以用排水法求体积,形状规则的物体可以用公式直接求体积。
排水法的公式:
V物体=V现在-V原来
也可以V物体=S×(h现在- h原来)
V物体=S×h升高
8、【体积单位换算】
大单位乘进率=小单位
小单位÷进率=大单位
进率:1立方米=1000立方分米=1000000立方厘米(立方相邻单位进率1000)
1立方分米=1000立方厘米=1升=1000毫升
1立方厘米=1毫升
1平方米=100平方分米=10000平方厘米
1平方千米=100公顷=1000000平方米
注意:长方体与正方体关系
把长方体或正方体截成若干个小长方体(或正方体)后,表面积增加了,体积不变。
重量单位进率,时间单位进率,长度单位进率
大单位乘进率=小单位
小单位÷进率=大单位
数学奇偶数性质
1、两个连续整数中必有一个奇数和一个偶数。
2、奇数+奇数=偶数;偶数+奇数=奇数;偶数+偶数+...+偶数=偶数。
3、奇数-奇数=偶数;偶数-奇数=奇数;奇数-偶数=奇数。
4、若a、b为整数,则a+b与a-b有相同的奇偶性,即a+b与a-b同为奇数或同为偶数。
5、n个奇数的乘积是奇数,n个偶数的乘积是偶数;算式中有一个是偶数,则乘积是偶数。
6、奇数的个位是1、3、5、7、9;偶数的个位是0、2、4、6、8。
7、奇数的平方除以2、4、8余1。
8、任意两个奇数的平方差是2、4、8的倍数。
数学时分秒知识点
1、钟面上有3根针,它们分别是时针、分针、秒针,其中走得最快的是秒针,走得最慢的是时针。(时针最短,秒针最长)
2、计量很短的时间,常用秒。秒是比分更小的时间单位。
3、钟面上最长最细的针是秒针。秒针走一小格的时间是1秒。
4、秒表:一般在体育运动中用来记录以秒为单位的时间。
5、常用时间单位:时、分、秒。
6、时间单位:时、分、秒,每相邻两个个单位之间的进率都是60。
1时=60分1分=60秒半时=30分30分=半时
7、分针走一圈,时针走一大格,是1小时。秒针走一圈,分针走一小格,是1分。
8、计算一段时间,可以用结束的时刻减去开始的时刻。
【五年级上册数学第六单元的知识点归纳】相关文章:
初二上册语文第六单元知识点总结归纳06-20
五年级上学期数学第六单元知识点归纳07-25
小学五年级上册数学1单元知识点归纳06-06
初二上册数学第六单元知识点07-04
年级数学上册第三单元知识点归纳07-23
七年级语文上册第六单元知识点归纳11-03
语文三年级上册第六单元知识点归纳07-14
五年级数学上册第六单元知识点整理11-25