- 相关推荐
高一下册数学空间直角坐标系知识点的梳理
在我们平凡无奇的学生时代,大家最不陌生的就是知识点吧!知识点是指某个模块知识的重点、核心内容、关键部分。还在苦恼没有知识点总结吗?下面是小编整理的高一下册数学空间直角坐标系知识点的梳理,欢迎大家分享。
空间直角坐标系知识点
1、定义
各轴之间的顺序要求符合右手法则,即以右手握住Z轴,让右手的四指从X轴的正向以90度的直角转向Y轴的正向,这时大拇指所指的方向就是Z轴的正向.这样的三个坐标轴构成的坐标系称为右手空间直角坐标系.与之相对应的是左手空间直角坐标系.一般在数学中更常用右手空间直角坐标系,在其他学科方面因应用方便而异。三条坐标轴中的任意两条都可以确定一个平面,称为坐标面.它们是:由X轴及Y轴所确定的XOY平面;y轴与z轴所确定的yOz平面;z轴与x轴所确定的yOx平面.这三个相互垂直的坐标面把空间分成八个部分,每一部分称为一个卦限.位于X,Y,Z轴的正半轴的卦限称为第一卦限,从第一卦限开始,在XOY平面上方的卦限,按逆时针方向依次称为第二,三,四卦限;第一,二,三,四卦限 下方的卦限依次称为第五,六,七,八卦限.
2、具体概念
以空间一点O为原点,建立三条两两垂直的数轴;x轴,y轴,z轴,这时建立了空间直角坐标系Oxyz,其中点O叫做坐标原点,三条轴统称为坐标轴,由坐标轴确定的平面叫坐标平面。
3、点公式
空间中两点P1(x1,y1,z1)、P2(x2,y2,z2),中点P坐标[(x1+x2)/2,(y1+y2)/2,(z1+z2)/2
4、距离公式
在空间中:
设A(x1,y1,z1),B(x2,y2,z2)
|AB|=[(x1-x2)2+ (y1-y2)2+ (z1-z2)2]
表示方法
设点M为空间的一个定点,过点M分别作垂直于x、y、z轴的平面,依次交x、y、z轴于点P、Q、R设点P、Q、R在x、y、z轴上的坐标分别为x、y、z,那么就得到与点M对应惟一确定的有序实数组(x,y,z),有序实数组(x,y,z)叫做点M的坐标,记作M(x,y,z),这样就确定了M点的空间坐标了,其中x、y、z分别叫做点M的横坐标、纵坐标、竖坐标。
知识点的梳理
1.空间直角坐标系
(1)空间直角坐标系及相关概念
①空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴:x轴、y轴、z轴,这样就建立了一个空间直角坐标系Oxyz.
②相关概念:点O叫做坐标原点,x轴、y轴、z轴叫做坐标轴.通过每两个坐标轴的平面叫做坐标平面,分别称为xOy平面、yOz平面、xOz平面.
(2)右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.
2.空间一点的坐标空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点M在此空间直角坐标系中的坐标,记作M(x,y,z).其中x叫做点M的横坐标,y叫做点M的纵坐标,z叫做点M的竖坐标.
【高一下册数学空间直角坐标系知识点的梳理】相关文章:
数学平面直角坐标系的知识点03-24
数学平面直角坐标系知识点08-15
数学平面直角坐标系知识点介绍04-07
数学平面直角坐标系的知识点汇总01-19
初一下册数学平面直角坐标系的知识点08-23
初一数学平面直角坐标系知识点总结11-25
初一数学平面直角坐标系知识点介绍01-26
高一数学上册知识点梳理01-26
七年级数学平面直角坐标系知识点08-08
高一物理知识点梳理07-25