- 相关推荐
最新四年级数学下册各单元复习知识点
在平日的学习中,大家都背过各种知识点吧?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。为了帮助大家更高效的学习,下面是小编为大家收集的最新四年级数学下册各单元复习知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。
最新四年级数学下册各单元复习知识点
第一单元:四则运算(16%)
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,有乘、除法和加、减法、要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;括号里面的算式计算顺序遵循以上的计算顺序。
5、加法、减法、乘法和除法统称为四则运算。
关于“0”的运算
1、“0”不能做除数; 字母表示:a÷0错误
2、一个数加上0还得原数; 字母表示:a+0= a
3、一个数减去0还得原数; 字母表示:a-0= a
4、被减数等于减数,差是0; 字母表示:a-a = 0
5、一个数和0相乘,仍得0; 字母表示:a×0= 0
6、0除以任何非0的数,还得0; 字母表示:0÷a(a≠0)= 0
7、0÷0得不到固定的商;5÷0得不到商.
第二单元:位置与方向:(8%)
1、 确定物体位置的条件:一是确定方向,二是确定距离,三是角度。
例如;商店在学校北偏东45°方向上,距离是1500米。
2、根据方向和距离确定或者绘制物体的具体地点。(比例尺、角的画法和度量)
注意:
1、比例尺 2、正北方向3、角的画法
2、位置间的相对性。会描述两个物体间的相对位置关系。
例如:小明家在学校西偏北30°的方向上,距离是1000米。
那么,学校在小明家东偏南30°的方向上,距离是1000米。
相对位置的特点是:方向相反,角度相同,距离相等 ( 东与西相对,南与北相对)
3、简单路线图的绘制。
4、地图的三要素:图例、方向、比例尺。
5、确定方向时:
A、先确定观测点
(1)从哪里出发,那里就是观测点。
(2)“在”字后面的为观测点。
B、站在观测点来看方向。
四年级数学知识点总结
第一单元大数的认识
1.10个一万是十万,10个十万是一百万,10个一百万是一千万,10个一千万是一亿。
相邻两个计数单位之间的进率是“十”,这种计数方法叫做十进制计数法。
特别注意:计数单位与数位的区别。
2、在用数字表示数的时候,这些计数单位要按照一定的顺序排列起来,它们所占的位置叫做数位。
3、位数:一个数含有几个数位,就是几位数,如652100是个六位数。
4、按照我国的计数习惯,从右边起,每四个数位是一级。
6、亿以上数的读法:
①先分级,从高位开始读起。先读亿级,再读万级,最后读个级。
②亿级的数要按照个级的数的读法来读,再在后面加上一个“亿”字。万级的数要按照个级的数的读法来读,再在后面加上一个“万”字。
③每级末尾不管有几个0,都不读。其他数位有一个“0”或连续几个“0”,都只读一个“0”。
7、亿以上数的写法:
①从最高位写起,先写亿级,再写万级,最后写个级。
②哪个数位上一个单位也没有,就在那个数位上写0。
8、比较数的大小:
①位数不同的两个数,位数多的数比较大。
②位数相同的两个数,从最高位开始比较。
9、求近似数:
省略万位后面的尾数,要看千位上的数;省略亿位后面的尾数,要看千万位上的数。
这种求近似数的方法叫“四舍五入法”,是“舍”还是“入”,要看省略的尾数最高位上的数是小于5还是等于或大于5。小于5就舍去尾数,等于或大于5就向前一位进1,再舍去尾数。
10、表示物体个数:1,2,3,4,5,6,7,8,9,10,…….都是自然数。一个物体也没有,用0来表示,0也是自然数。所有的自然数都是整数。
11、最小的自然数是0,没有最大的自然数,自然数的个数是无限的。
12、每相邻的两个计数单位之间的进率都是十,这种计数方法叫做十进制计数法。
13、ON╱CE:开关及清除屏键,清除显示屏上的内容。
AC:清除键,清除所有内容。
第二单元公顷和平方千米
1、边长是100米的正方形面积是1公顷。
1公顷=10000平方米
2、边长是1千米的正方形面积是1平方千米。
1平方千米=1000000平方米
1平方千米=100公顷
3、从大单位变到小单位,乘以进率。
从小单位变到大单位,除以进率。
4、国土面积(中国、省、市、区等)、海洋面积等特别大的面积适合用平方千米。如
香港特别行政区的面积约1100。
广场、校园等稍大土地面积适合用公顷。如天安门广场的占地面积大约是44;
操场、教室等较小的面积适合用平方米。如一个教室的面积约60;
5、长方形面积=长×宽
正方形面积=边长×边长
第三单元角的度量
1、直线、射线、线段
直线:可以向两端无限延伸,没有端点。
射线:可以向一端无限延伸,只有一个端点。
线段:不能延伸,有两个端点,线段是直线的一部分。
2、直线、射线与线段有什么联系和区别?
①、直线和射线都可以无限延伸,因此无法量出长短。
②、线段可以量出长度。
③、线段有两个端点,直线没有端点,射线只有一个端点。
4、角的计量单位是“度”,用符号“°”表示。 3、从一点引出两条射线所组成的图形叫做角。
将圆平均分成360份,每一份所对的角的大小是l度,记做1°。
5、角的大小与角两边的长短没关系。角的大小与叉开的大小有关系,叉开得越大,角越大。
6、度量角的工具叫量角器。
7、量角的步骤:
①把量角器的中心与角的顶点重合,0°刻度线与角的一条边重合。
②角的另一条边所对的量角器上的刻度,就是这个角的度数。
8、角可以看作由一条射线绕着它的端点,从一个位置旋转到另一个位置所成的图形。
9、一条射线绕它的端点旋转半周,形成的角叫做平角。1平角=180°
10、一条射线绕它的端点旋转一周,形成的角叫做周角。1周角=360°
1周角=2平角=4直角1直角=90°
11、小于90度的角叫做锐角,大于90度而小于180度的角叫做钝角。
锐角<直角<钝角<平角<周角
12、画角的步骤:
(1)画一条射线,使量角器的中心和射线的端点重合,0°刻度线和射线重合。
(2)在量角器上找到要画的角的度数(如65°)的地方,并点一个点。
(3)以画出的射线的端点为端点,通过刚画的点再画一条射线。
13、经过一点可以画无数条直线;经过两个点,只能画一条直线。
14、用三角板可以画的角:180°165°150°135°120°105°90°75°60°45°30°15°
第四单元三位数乘两位数
1、三位数乘两位数的笔算方法:
先用两位数个位上的数去乘三位数,积的末位和两位数的个位对齐;再用两位数十位上的数去乘三位数,积的末位和两位数的十位对齐;最后把两次乘得的积加起来。
2、积的变化规律:
一个因数不变,另一个因数乘(或除以)几(0除外),积也乘(或除以)几。
3、每件商品的价钱,叫做单价;买了多少,叫做数量;一共用的价钱,叫做总价。
单价×数量=总价
单价=总价÷数量
数量=总价÷单价
4、一共行了多长的路,叫做路程;每小时(或每分钟等)行的路程,叫做速度;行了几小时(或几分钟等),叫做时间。
速度×时间=路程
速度=路程÷时间
时间=路程÷速度
5、速度单位通常有:千米/时、米/分、米/秒等。
第五单元平行四边形和梯形
1、在同一个平面内不相交的两条直线叫做平行线,也可以说这两条直线互相平行。
记作:a‖b读作:a平行于b
2、两条直线相交成直角,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。记作:a⊥b读作:a垂直于b
3、从直线外一点到这条直线所画的垂直线段最短,它的长度叫做这点到直线的距离。
4、与两条平行线互相垂直的线段长度都相等。或者说:两条平行线之间的距离处处相等。经过直线上一点(或外一点)作垂线,可以画一条。
5、同一平面内,与同一条直线平行(或垂直)的两条直线也互相平行。
6、从平行四边形一条边上的一点向对边引一条垂线,这点和垂足之间的线段叫做平行四边形的高,垂足所在的边叫做平行四边形的底。
7、一个长方形,用两手捏住长方形的两个对角,向相反方向拉,可以拉成不同形状的平行四边形,但是周长不变。
8、平行四边形的特点:容易变形。例如:伸缩门、升降机
9、平行四边形和梯形有无数条高。
10、两腰相等的梯形叫做等腰梯形。特点:两腰相等,两底角相等。
11、有一个角是直角的梯形叫做直角梯形。特点:有一条腰就是梯形的高。
12、从梯形上底任取一个点,向下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。
13、两个完全一样的三角形可以拼成一个平行四边形。
两个完全一样的梯形可以拼成一个平行四边形。
两个完全一样的直角梯形可以拼成一个长方形或平行四边形。
14、长方形是特殊的平行四边形,正方形是特殊的平行四边形。正方形是特殊的长方形。
15、三角形三个内角的和是180°,四边形四个内角的和是360°。
16、四边形小结:
两组对边分别平行的四边形叫做平行四边形;
只有一组对边平行的四边形叫梯形。
两腰相等的梯形叫做等腰梯形。
有一个角是直角的梯形叫做直角梯形。
四个角都是直角的四边形叫长方形。
四个角都是直角,并且四条边都相等的四边形叫正方形。
第六单元除数是两位数的除法
1、去0法:被除数和除数的末尾同时去掉相同个数的0,商不变。
2、除数是两位数的除法的计算方法:
从被除数的高位除起,先用除数试除被除数的前两位数,如果它比除数小,再试除前三位数。
除到被除数的哪一位,就在那一位上写商。
求出每一位商,余下的数必须比除数小。
3、商的变化规律:
被除数和商的变化相同。除数和商的变化相反。
商不变的性质:被除数和除数同时乘(或除以)一个相同的数(0除外),商不变。
除数×商+余数=被除数
(被除数-余数)÷商=除数
第七单元条形统计图
1、条形统计图的特点:能直观的看出各种数量的大小,便于比较。
2、在绘制条形统计图时,条形图一格表示几,要根据具体情况来确定
第八单元数学广角--优化
1、沏茶问题:
合理安排时间的过程:
(1)明确完成一项工作要做哪些事情;
(2)明确每项事情各需要多少时间;
(3)合理安排工作的顺序,明确先做什么,后做什么,哪些事情可以同时做。
2、烙饼问题:烙饼的最优方案是每一次尽可能的让锅里按要求放最多的饼,这样既没有浪费资源,又节省时间。
3、对策论问题:解决同一个问题有不同的策略,要学会寻找最优方案。可以用列举法选择最优方案。
四年级下册数学广角知识点
数学广角(植树问题)
一、1.两头(两端)要栽:棵数=间隔数+1
2.一头(一端)要栽:棵数=间隔数
3.两头(两端)不栽:棵数=间隔数-1
二、棋盘棋子数目:
1.棋盘最外层棋子数:每边棋子数×边数-边数
2.棋盘总的棋子数:每行棋子数×每列棋子数
3.方阵最外层人数:每边人数×4-4
4.多边形上摆花盆:每边摆的花盆数×边数-边数
数学广角——鸽巢问题
一、鸽巢问题
1.把n+1(n是大于的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进了2个物体。
2.把多于kn(k、n都是大于的自然数)个物体放进n个“鸽笼”中,总有一个“鸽笼”至少放进(k+1)个物体。
二、鸽巢问题的应用
1.如果有n(n是大于的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了2个物品,那么至少需要有n+1个物品。
2.如果有n(n是大于的自然数)个“鸽笼”,要保证有一个“鸽笼”至少放进了(k+1)(k是大于的自然数)个物品,那么至少需要有(kn+1)个物品。
3.(分放的物体总数-1)÷(其中一个鸽笼里至少有的物体个数-1)=a……b(b),a就是所求的鸽笼数。
4.利用“鸽巢问题”解决问题的思路和方法:构造“鸽巢”,建立“数学模型”;把物体放入“鸽巢”,进行比较分析;说明理由,得出结论。
例如:有4只鸽子飞进3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。
提示:解决“鸽巢问题”的关键是找准谁是“鸽笼”,谁是“鸽子”。
小学数学四大领域主要内容
数与代数:的认识,数的表示,数的大小,数的运算,数量的估计;
图形与几何:空间与平面的基本图形,图形的性质和分类;图形的平移、旋转、轴对称;
统计与概率:收集、整理和描述数据,处理数据;
实践与综合应用:以一类问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验的重要途径。
数学列方程解应用题的一般步骤
1、弄清题意,找出未知数,并用X表示;
2、找出应用题中数量之间的相等关系,列方程;
3、解方程;
4、检验、写出答案。
【最新四年级数学下册各单元复习知识点】相关文章:
五年级数学下册各单元重要知识点03-02
一年级数学下册各单元知识点09-21
考研数学各知识点难点分析及复习指导12-05
初三数学下册知识点复习07-26
最新五年级下册数学复习知识点07-11
高二数学复习知识点梳理最新12-07
高一数学下册《函数》知识点复习08-10
小学三年级下册语文各单元知识点归纳07-29
初一数学下册第二单元知识点01-22