数学 百文网手机站

八年级数学下册的知识点相似图形

时间:2021-06-11 10:28:00 数学 我要投稿

八年级数学下册的知识点相似图形

  相似图形

八年级数学下册的知识点相似图形

  一、线段的比

  ※1、如果选用同一个长度单位量得两条线段AB, CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n ,或写成 .

  ※2、 四条线段a、b、c、d中,如果a与b的比等于c与d的比,即 ,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.

  ※3、注意点:

  ①a:b=k,说明a是b的k倍;

  ②由于线段 a、b的长度都是正数,所以k是正数;

  ③比与所选线段的长度单位无关,求出时两条线段的长度单位要一致;

  ④除了a=b之外,a:bb:a, 与 互为倒数;

  ⑤比例的基本性质:若 , 则ad=bc; 若ad=bc, 则

  二、黄金分割

  ※1、如图1,点C把线段AB分成两条线段AC和BC,如果 ,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比.

  ※2、黄金分割点是最优美、最令人赏心悦目的点.

  四、相似多边形

  1、一般地,形状相同的图形称为相似图形.

  ※2、对应角相等、对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.

  五、相似三角形

  ※1、在相似多边形中,最为简简单的就是相似三角形.

  ※2. 对应角相等、对应边成比例的三角形叫做相似三角形.相似三角形对应边的比叫做相似比.

  ※3、全等三角形是相似三角的特例,这时相似比等于1. 注意:证两个相似三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.

  ※4、相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比.

  ※5、相似三角形周长的比等于相似比.

  ※6、相似三角形面积的比等于相似比的平方.

  六、探索三角形相似的条件

  ※1、相似三角形的判定方法:

  一般三角形 直角三角形

  基本定理:平行于三角形的一边且和其他两边(或两边的延长线)相交的直线,所截得的三角形与原三角形相似.

  ①两角对应相等;

  ②两边对应成比例,且夹角相等;

  ③三边对应成比例. ①一个锐角对应相等;

  ②两条边对应成比例:

  a. 两直角边对应成比例;

  b. 斜边和一直角边对应成比例.

  ※2、平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.

  ※3、平行于三角形一边的直线与其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.

  八、相似的多边形的性质

  ※相似多边形的周长等于相似比;面积比等于相似比的平方.

  九、图形的放大与缩小

  ※1. 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形; 这个点叫做位似中心; 这时的相似比又称为位似比.

  ※2. 位似图形上任意一对对应点到位似中心的距离之比等于位似比.

  ◎3. 位似变换:

  ①变换后的图形,不仅与原图相似,而且对应顶点的连线相交于一点,并且对应点到这一交点的距离成比例.像这种特殊的`相似变换叫做位似变换.这个交点叫做位似中心.

  ②一个图形经过位似变换后得到另一个图形,这两个图形就叫做位似形.

  ③利用位似的方法,可以把一个图形放大或缩小.

  第五章 数据的收集与处理

  一、 每周干家务活的时间

  ※1、所要考察的对象的全体叫做总体;

  把组成总体的每一个考察对象叫做个体;

  从总体中取出的一部分个体叫做这个总体的一个样本.

  ※2、为一特定目的而对所有考察对象作的全面调查叫做普查;

  为一特定目的而对部分考察对象作的调查叫做抽样调查.

  二、数据的收集

  ※1、抽样调查的特点: 调查的范围小、节省时间和人力物力优点.但不如普查得到的调查结果精确,它得到的只是估计值.

  而估计值是否接近实际情况还取决于样本选得是否有代表性.

  第六章 证明(一)

  二、 定义与命题

  ※1、 一般地,能明确指出概念含义或特征的句子,称为定义.

  定义必须是严密的.一般避免使用含糊不清的术语,例如一些、大概、差不多等不能在定义中出现.

  ※2、可以判断它是正确的或是错误的句子叫做命题.

  正确的命题称为真命题,错误的命题称为假命题.

  ※3、 数学中有些命题的正确性是人们在长期实践中总结出来的,并且把它们作为判断其他命题真假的原始依据,这样的真命题叫做公理.

  ※4、有些命题可以从公理或其他真命题出发,用逻辑推理的方法判断它们是正确的,并且可以进一步作为判断其他命题真假的依据,这样的真命题叫做定理.

  5、根据题设、定义以及公理、定理等,经过逻辑推理,来判断一个命题是否正确,这样的推理过程叫做证明.

  三. 为什么它们平行

  ※1、平行判定公理: 同位角相等,两直线平行.(并由此得到平行的判定定理)

  ※2、平行判定定理: 同旁内互补,两直线平行.

  ※3、平行判定定理: 同错角相等,两直线平行.

  四、如果两条直线平行

  ※1. 两条直线平行的性质公理: 两直线平行,同位角相等;

  ※2. 两条直线平行的性质定理: 两直线平行,内错角相等;

  ※3. 两条直线平行的性质定理: 两直线平行,同旁内角互补.

  五、三角形和定理的证明

  ※1. 三角形内角和定理: 三角形三个内角的和等于180

  2. 一个三角形中至多只有一个直角

  3. 一个三角形中至多只有一个钝角

  4. 一个三角形中至少有两个锐角

  六、关注三角形的外角

  ※1. 三角形内角和定理的两个推论:

  推论1: 三角形的一个外角等于和它不相邻的两个内角的和;

  推论2: 三角形的一个外角大于任何一个和它不相邻的内角.

  (注:※表示重点部分;表示了解部分;◎表示仅供参阅部分;)


【八年级数学下册的知识点相似图形】相关文章:

八年级数学下册《相似图形》知识点归纳12-04

初中数学知识点相似图形02-09

初三下册数学图形的相似的知识点09-06

初三下册数学知识点归纳之相似图形10-05

九年级下册数学第27章相似图形知识点归纳12-05

数学相似知识点总结12-08

数学图形知识点03-02

中考数学相似形的知识点10-08

图形数学知识点01-26