数学 百文网手机站

数学高二必修三第二章变量间的相关关系知识点

时间:2021-06-09 20:36:33 数学 我要投稿

数学高二必修三人教版第二章变量间的相关关系知识点

  数学是学习和研究现代科学技术必不可少的基本工具。小编准备了数学高二必修三人教版第二章知识点,具体请看以下内容。

数学高二必修三人教版第二章变量间的相关关系知识点

  知识点1:变量之间的相关关系

  两个变量之间的关系可能是确定的关系(如:函数关系),或非确定性关系。当自变量取值一定时,因变量也确定,则为确定关系;当自变量取值一定时,因变量带有随机性,这种变量之间的关系称为相关关系。相关关系是一种非确定性关系,如长方体的高与体积之间的关系就是确定的函数关系,而人的身高与体重的关系,学生的数学成绩好坏与物理成绩的关系等都是相关关系。 注意:两个变量之间的相关关系又可分为线性相关和非线性相关,如果所有的样本点都落在某一函数曲线的附近,则变量之间具有相关关系(不确定性的关系),如果所有样本点都落在某一直线附近,那么变量之间具有线性相关关系,相关关系只说明两个变量在数量上的关系,不表明他们之间的因果关系,也可能是一种伴随关系。 点睛:两个变量相关关系与函数关系的.区别和联系

  相同点:两者均是两个变量之间的关系,不同点:函数关系是一种确定的关系,如匀速直线运动中时间t与路程s的关系,相关关系是一种非确定的关系,如一块农田的小麦产量与施肥量之间的关系,函数关系是两个随机变量之间的关系,而相关关系是非随机变量与随机变量之间的关系;函数关系式一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系。

  知识点2:散点图

  1.在考虑两个量的关系时,为了对变量之间的关系有一个大致的了解,人们常将变量所对应的点描出来,这些点就组成了变量之间的一个图,通常称这种图为变量之间的散点图。

  2.从散点图可以看出如果变量之间存在着某种关系,这些点会有一个集中的大致趋势,这种趋势通常可以用一条光滑的曲线来近似,这种近似的过程称为曲线拟合。

  3.对于相关关系的两个变量,如果一个变量的值由小变大时,另一个变量的的值也由小变大,这种相关称为正相关,正相关时散点图的点散布在从左下角到由上角的区域内。

  如果一个变量的值由小变大时,另一个变量的值由大变小,这种相关称为负相关,负相关时散点图的点散步在从左上角到右下角的区域。

  注意:画散点图的关键是以成对的一组数据,分别为此点的横、纵坐标,在平面直角坐标系中把其找出来,其横纵坐标的单位长度的选取可以不同,高中数学,应考虑数据分布的特征,散点图只是形象的描述点的分布,如果点的分布大致呈一种集中趋势,则两个变量可以初步判断具有相关关系,如图中数据大致分布在一条直线附近,则表示的关系是线性相关,如果两个变量统计数据的散点图呈现如下图所示的情况,则两个变量之间不具备相关关系,例如学生的身高和学生的英语成绩就没有相关关系。

  点睛:散点图又称散点分布图,是以一个变量为横坐标,另一变量为纵坐标,利用散点(坐标点)的分布形态反映变量统计关系的一种图形。特点是能直观表现出影响因素和预测对象之间的总体关系趋势。优点是能通过直观醒目的图形方式反映变量间关系的变化形态,以便决定用何种数学表达方式来模拟变量之间的关系。散点图不仅可传递变量间关系类型的信息,也能反映变量间关系的明确程度

  知识点3:回归直线

  (1)回归直线的定义

  如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。

  (2)回归直线的特征

  如果能够求出这条回归直线的方程(简称回归方程),那么我们就可以比较清楚的了解对应两个变量之间的相关性,就像平均数可以作为一个变量的数据的代表一样,这条直线也可以作为两个变量之间具有相关关系的代表。

  高中是人生中的关键阶段,大家一定要好好把握高中,小编为大家整理的数学高二必修三人教版第二章知识点,希望大家喜欢。

【数学高二必修三第二章变量间的相关关系知识点】相关文章:

高二数学变量间的相关关系知识点11-30

物理变量间的相关关系知识06-23

数学必修三第二章知识点11-16

高二物理必修三第二章知识点10-29

数学必修1集合间的基本关系的知识点12-09

人教版必修三数学知识点第二章11-16

数学必修二第二章知识点11-20

必修四数学第二章知识点01-05

高三数学集合间的基本关系的知识点02-03