小学数学简单的统计知识点

时间:2023-06-15 08:55:56 偲颖 数学 我要投稿
  • 相关推荐

小学数学简单的统计知识点

  漫长的学习生涯中,说到知识点,大家是不是都习惯性的重视?知识点也不一定都是文字,数学的知识点除了定义,同样重要的公式也可以理解为知识点。哪些知识点能够真正帮助到我们呢?以下是小编为大家整理的小学数学简单的统计知识点,欢迎阅读与收藏。

小学数学简单的统计知识点

  知识点1:

  一、统计图的分类及点

  (1)条形统计图:条形统计图是用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来。

  作用:从条形统计图中很容易看出各种数量的多少。

  (2)拆线统计图:折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来。

  作用:折线统计图不但可以表示出数量的多少,而且能够清楚地表示出数量增减变化的情况。

  (3)扇形统计图:扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数。

  作用:通过扇形统计图可以很清楚地表示各部分数量同总数之间的关系。

  折线统计图不但能反映数据(量)的多少,更能反映某一项目在某一时间内的数据(量)增减变化情况.

  二、平均数、众数、中位数比较

  相同点

  平均数、中位数和众数这三个统计量的相同之处主要表现在:都是来描述数据集中趋势的统计量;都可用来反映数据的一般水平;都可用来作为一组数据的代表。

  不同点

  它们之间的区别,主要表现在以下方面。

  1、定义不同

  平均数:一组数据的总和除以这组数据个数所得到的商叫这组数据的平均数。

  中位数:将一组数据按大小顺序排列,处在最中间位置的一个数叫做这组数据的中位数。

  众数:在一组数据中出现次数最多的数叫做这组数据的众数。

  2、求法不同

  平均数:用所有数据相加的总和除以数据的个数,需要计算才得求出。

  中位数:将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数。它的求出不需或只需简单的计算。

  众数:一组数据中出现次数最多的那个数,不必计算就可求出。

  3、个数不同

  在一组数据中,平均数和中位数都具有惟一性,但众数有时不具有惟一性。在一组数据中,可能不止一个众数,也可能没有众数。

  4、呈现不同

  平均数:是一个“虚拟”的数,是通过计算得到的,它不是数据中的原始数据。

  中位数:是一个不完全“虚拟”的数。当一组数据有奇数个时,它就是该组数据排序后最中间的那个数据,是这组数据中真实存在的一个数据;但在数据个数为偶数的情况下,中位数是最中间两个数据的平均数,它不一定与这组数据中的某个数据相等,此时的中位数就是一个虚拟的数。

  众数:是一组数据中的原数据,它是真实存在的。

  5、代表不同

  平均数:反映了一组数据的平均大小,常用来一代表数据的总体“平均水平”。

  中位数:像一条分界线,将数据分成前半部分和后半部分,因此用来代表一组数据的“中等水平”。

  众数:反映了出现次数最多的数据,用来代表一组数据的“多数水平”。

  这三个统计量虽反映有所不同,但都可表示数据的集中趋势,都可作为数据一般水平的代表

  6、特点不同

  平均数:与每一个数据都有关,其中任何数据的变动都会相应引起平均数的变动。主要缺点是易受极端值的影响,这里的极端值是指偏大或偏小数,当出现偏大数时,平均数将会被抬高,当出现偏小数时,平均数会降低。

  中位数:与数据的排列位置有关,某些数据的变动对它没有影响;它是一组数据中间位置上的代表值,不受数据极端值的影响。

  众数:与数据出现的次数有关,着眼于对各数据出现的频率的考察,其大小只与这组数据中的部分数据有关,不受极端值的影响,其缺点是具有不惟一性,一组数据中可能会有一个众数,也可能会有多个或没有。

  7、作用不同

  平均数:是统计中最常用的数据代表值,比较可靠和稳定,因为它与每一个数据都有关,反映出来的信息最充分。平均数既可以描述一组数据本身的整体平均情况,也可以用来作为不同组数据比较的一个标准。因此,它在生活中应用最广泛,比如我们经常所说的平均成绩、平均身高、平均体重等。

  中位数:作为一组数据的代表,可靠性比较差,因为它只利用了部分数据。但当一组数据的个别数据偏大或偏小时,用中位数来描述该组数据的集中趋势就比较合适。

  众数:作为一组数据的代表,可靠性也比较差,因为它也只利用了部分数据。在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的“集中趋势”就比较适合。

  平均数、中位数和众数的联系与区别:

  平均数应用比较广泛,它作为一组数据的代表,比较稳定、可靠。但平均数与一组数据中的所有数据都有关系,容易受极端数据的影响;简单的说就是表示这组数据的平均数。中位数在一组数据中的数值排序中处于中间的位置,人们由中位数可以对事物的大体进行判断和掌控,它虽然不受极端数据的影响,但可靠性比较差;所以中位数只是表示这组数据的一般情况。众数着眼对一组数据出现的频数的考察,它作为一组数据的代表,它不受极端数据的影响,其大小与一组数据中的部分数据有关,当一组数据中,如果个别数据有很大的变化,且某个数据出现的次数较多,此时用众数表示这组数据的集中趋势,比较合适,体现了整个数据的集中情况。

  平均数、中位数和众数它们都有各自的的优缺点:

  平均数:(1)需要全组所有数据来计算;

  (2)易受数据中极端数值的影响.

  中位数:(1)仅需把数据按顺序排列后即可确定;

  (2)不易受数据中极端数值的影响.

  众数:

  (1)通过计数得到;

  (2)不易受数据中极端数值的影响

  三、可能性大小

  可能性的大小与物体的数量多少有关,可能用分数来表示可能性的大小。

  知识点2:

  一、两位数加两位数

  1、两位数加两位数不进位加法的计算法则:把相同数位对齐列竖式,在把相同数位上的数相加。

  2、两位数加两位数进位加法的计算法则:①相同数位对齐;②从个位加起;③个位满十向十位进1。

  3、笔算两位数加两位数时,相同数位要对齐,从个位加起,个位满十要向十位进“1”,十位上的数相加时,不要遗漏进上来的“1”。

  4、和=加数+加数

  一个加数=和-另一个加数

  二、两位数减两位数

  1、两位数减两位数不退位减的笔算:相同数位对齐列竖式,再把相同数位上的数相减

  2、两位数减两位数退位减的笔算法则:①相同数位对齐;②从个位减起;③个位不够减,从十位退1,在个位上加10再减。

  3、笔算两位数减两位数时,相同数位要对齐,从个位减起,个位不够减,从十位退1,个位加10再减,十位计算时要先减去退走的1再算。

  4、差=被减数-减数

  被减数=减数+差

  减数=被减数+差

  三、连加、连减和加减混合

  1、连加、连减

  连加、连减的笔算顺序和连加、连减的口算顺序一样,都是从左往右依次计算。

  ①连加计算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相加一样,都要把相同数位对齐,从个位加起。

  ②连减运算可以分步计算,也可以写成一个竖式计算,计算方法与两个数相减一样,都要把相同数位对齐,从个位减起。

  2、加减混合

  加、减混合算式,其运算顺序、竖式写法都与连加、连减相同。

  3、加减混合运算写竖式时可以分步计算,方法与两个数相加(减)一样,要把相同数位对齐,从个位算起;也可以用简便的写法,列成一个竖式,先完成第一步计算,再用第一步的结果加(减)第二个数。

【小学数学简单的统计知识点】相关文章:

关于小学数学《统计》的知识点07-04

统计数学统计概念知识点07-22

小学数学统计与可能性知识点09-04

中考数学概率与统计的知识点07-19

统计表的数学知识点06-21

统计初步数学知识点解析07-21

初三数学统计与概率知识点07-24

中考数学备考概率与统计知识点07-10

中考数学备考概率与统计的知识点07-10

小学五年级数学统计知识点11-01