数学 百文网手机站

初中数学教学如何突破难点

时间:2021-05-26 15:30:05 数学 我要投稿

初中数学教学如何突破难点

  课堂教学突破教学的难点

初中数学教学如何突破难点

  一、把复杂问题简单化,抽象问题具体化

  教育家叶圣陶说过:“谁能把把复杂问题简单化,谁就是教育家。”在教学中,我们常常遇到一些复杂的数学问题学生找不到突破口,根据学生的年龄特点和认知水平感觉很难,这就需要我们教师想办法从简单的问题入手,搭建解决问题的支架,使问题化繁为简,从而达到解决问题,突破难点的目的。如八年级上册的三角形全等的“边边边”公理的教学,学生不明白证明两个三角形全等为什么要用三个条件。在教学过程中,我们可设计问题:1。一条边相等或一个角相等的两个三角形全等吗?(只满足一个条件的两个三角形全等吗?)2。两个条件包括哪几种情况?满足两个条件的两个三角形全等等吗?三个条件包括哪几种情况?满足三个条件的两个三角形全等吗?这样,让学生沿着教师设计的台阶,拾级而上,层层推进,把复杂问题简单化,达到化难为易的效果。

  二、引导学生动手操作实验突破难点

  由于学生数学知识的局限和思维能力的局限,有些数学问题,尤其是几何问题,单凭纸上谈兵,学生还是很难明白。我们可以让学生动手操作实验,寓教学于活动之中。例如在“勾股定理”教学中,教师可让学生操作实验:用四个直角三角形拼成一个正方形。学生在动手操作活动中,显然已经明确了勾股定理的发生过程,同时又掌握了证明方法;又如教学“镶嵌”时,当学生弄清了“镶嵌”的概念后,我就让学生以学习小组形式,用几种正多边形纸片来拼图,得到哪几种正多边形可以单独镶嵌,哪几种正多边形可以一起镶嵌,有什么规律。在剪、折、拼中,难点的神秘面纱随之荡然无存,教师的教和学生的学都感觉轻松愉快,何乐而不为呢?

  三、构建思维单元,突破难点

  思维单元是集概念、判断、推理为一体的逻辑思维的综合形式,是思维过程的高度浓缩和概括。不仅包括所有的定义、定理、公理、公式、法则、规律……这些基础知识,广泛地说还包括重要而典型的例题、习题及其证明过程。构建数学思维单元,是在圆满解决数学问题的基础上,对问题及其求解过程进行反思探究、归纳总结、加工提炼、推陈出新的再认识。在教师的指导下,学生可通过这一过程,更进一步加深对求解过程的理解和对问题的本质属性的认识,使解决问题的思维过程得到质的飞跃。构建数学思维单元,并积累到一定程度,学生的思维水平就会发生突变,数学素质得到相应提高。从而大大地提高解题水平。

  教学难点突破方法探索

  一、揭示概念的本质特征

  记住了概念,并不等于理解了概念,理解了概念也不等于能熟练应用概念。数学教师在进行概念教学时,不但要把概念讲清讲透彻,还要设计一些例题、练习题,通过学生的练习、探索、合作交流、辨析,以及教师的讲解,进一步揭示概念的本质特征。从而达到学生熟练应用概念的目的。初一数学中的平方差公式内容,是教学的一个难点,也是考试的一个考点。学生初学公式后,还以为这个公式简单,但具体做起题来,却常常出错。虽说是平方差公式,但是哪一个数的平方减去哪一个数的平方,学生并没有深究,他们从公式的表面来看,好像是两个二项式中的第一个数的平方减去第二个数的平方。例如这道题很多学生就是这样做的:(—x—y)(x—y)=x2—y2。通过这道题的练习,暴露出了学生对公式的本质特征并没有掌握。带着问题,引导学生研究公式(a+b(a—b)=a2—b2后发现,公式中前后有一个相同项,又有一个互为相反数的项,它的结果实际等于相同项的平方,减去互为相反数的项的平方。学生理解了公式的本质特征后,做这类题就得心应手了。学生也知道了凡是符合了前后有一个相同项,又有一个互为相反数的项的两个二项式的积就可应用平方差公式计算,否则就不就不能应用平方差公式。这样学生做能否用平方差公式计算的辨析题,只要稍加观察,就可选出正确的答案。

  二、对比方法的应用

  没有比较就没有鉴别。在数学教学中,比较方法的应用,可促进学生对概念内涵的真正理解;可起到化难为易,化繁为简的作用。例如二次根式运算中,对两个公式(a)2=a(a≥0)(a)2=|a|,学生知道两个公式不一样,但却不知道不一样在哪里,通过分析,学生知道了:(1)、是求二次根式的平方,是求一个数的二次幂的算术平方根。(2)、中a是非负数中a是任意实数。(3)从表面看,两个的运算顺序是先开方在平方,是先平方再开方。(4)的结果直接等于被开方数就行了,要先等于被开方数的底数的绝对值,然后再根据绝对值得意义,求出最后的`结果。为了加深印象,师生共同给总结了一个口诀:平方再开方,先用绝对值框。框起来再根据绝对值的性质求出结果。教师还给它做了个形象比喻,这个底数就犹如一个嫌疑人,先关起来,再仔细审查,且不可马虎造成错案。比喻引来学生的会意微笑。微笑是一种紧张后的放松,是一种迷惑后的明白,是一种难点解决后的释放。也是师生付出心血的回报。

  突破教学重点难点技巧

  以旧知识为生长点突破重点、难点。

  小学数学学科的特点之一就是系统性很强,每项新知识往往和旧知识紧密相连,新知识就是旧知识的延伸和发展,旧知识就是新知识的基础和生长点。有时新知识可以由旧知识迁移而来,可同时它又成为后续知识的基础。因此,数学知识点就像一根根链条节节相连、环环相扣。善于捕捉数学知识之间的衔接点,自觉地以“迁移”作为一种帮助学生学习的方法,以旧引新、旧中蕴新,组织积极的迁移,就不难实现教学重、难点的突破了。

  如在学习圆的面积时,认识圆的面积之后,鼓励学生大胆质疑。这样学生自然是想到该如何计算图的面积?公式是什么?怎么发现和推导圆的面积公式?此时的学生可能一片茫然,也可能会有惊人的发现,不管怎样都要鼓励学生大胆的猜测,设想,说出他们预设的方案?你打算怎样计算圆的面积?课堂上根据学生的反映随机处理,估计大部分学生会不得要领,即使知道,也可以让大家共同经历一下公式的发现之路。此时,由于学生的年龄小,不能和以前的平面图形建立联系,这就需要教师的引导,以前学过哪些平面图形?让学生迅速回忆,调动原有的知识储备,为新知的“再创造”做好知识的准备。根据学生的回答,选取其中的三个平面图形:平行四边形,三角形,梯形。让学生讨论并再现面积公式的推导过程。根据学生的回答,电脑配合演示,给学生视觉的刺激。平行四边形是通过长方形推导的,三角形面积公式是通过两个完全一样的三角形拼成平行西边形推导的,梯形也是如此。想个过程不是仅仅为了回忆,而是通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。经过这样的抽象和概括出问题的本质,因为知识的本身并不重要,重要的是数学思想的方法,那才是数学的精髓。

  合理应用媒体手段,辅助课堂教学,解决教学重点、难点。

  传统的数学教学,往往是一根粉笔、一个黑板、一张挂图和几个枯燥的数字,知识显得生硬而苍白;加之学生有意注意持续的时间较短,课堂思维活动比较紧张,时间一长,学生就容易感到疲倦,就很容易出现注意力分散,思想不集中,学习效率下降等现象。因此,在教学过程中,如何在课堂上突破难点是教师在教学中急需解决的问题。根据心理学规律和小学生学习特点,多媒体手段具有文字、图片、动画、图像等直观媒体信息功能可同步进行的优点,在同一屏幕上同时显示相关的文本、图像或动画,这是其他教学媒体无法达到的。

  特别是在大与小、远与近、快与慢、动与静、整体与部分、分解与组合等方面可以相互转化,生动地再现事物的发生、发展过程,使难以察觉的东西能清晰地呈现在学生感觉能力可及的范围之内,从而达到突破教学难点和重点的功效。

【初中数学教学如何突破难点】相关文章:

如何突破初中数学教学重难点11-11

数学教学如何难点突破07-03

如何突破数学命题难点06-22

如何突破数学重难点的教学妙招06-06

中学数学如何突破教学重难点11-04

如何突破高中数学教学重难点06-09

如何突破物理教学中的重难点03-10

如何确定初中数学教学重难点06-11

关于小学数学教学中如何突破难点的解决方法04-29