数学竞赛怎么学
搞竞赛要找好苗子,首先他是热情的,勤奋的,其次是有抱负的,不畏艰难的;当然不能是临时抱佛脚的。冰冻三尺,非一日之寒。应该从高一前的暑假就开始不停的学习、训练。细细地说来,注意事项还有很多。一起来看看:
学习进度方面
要在高一开学之前的那个暑假里把整个高中的数学内容全部学完,并在高一上学期应该完成像高三一样的两轮复习,基础太重要了,第一试占了150分,不可小视。然后,就是竞赛内容了,不要以为看几本竞赛书就可以了,因为那些书上讲得太粗略;这时候,对老师的要求就更高。老师不但要对竞赛内容非常熟悉,还要不断地总结重要的思想方法,使学生能够灵活运用。
入门书单
首先如果要涉猎竞赛,最基本的高中课程是一切的基础。接下来的书就是建立在此基础上的。我们最先做的当然是补全差距:课标大纲和竞赛大纲之间的差距。
1)《新编中学数学解题方法全书》,即基础衔接书。
2)《奥数教程》
经典奥数蓝皮书。优点是与课本知识联系紧密,适合你在第一遍学习高中数学知识的同时同步提高,帮助你打下坚实的基础,以讲解为主,以测试为辅。
提高书单
1)《奥赛小丛书》
专而精,很多专题非常精彩,难度涵盖联赛和冬令营,读起来也容易让同学们感兴趣。如果仅以省级国一为目标,其中概率、几何不等式可以不看,图论、组合几何、数论编的不错,集合变换、三角与几何虽然写的很好但不实用;其它的如函数、集合还好,可以看看。这套书中代数只有两本不等式,而且很不实用,不推荐。至于数学归纳法里面题很经典,不过很综合,可以放在该套书后面看。对于这套书要尽快看完,里面题要自己做,可能比较辛苦。总的来说这套书值得一看,要尽早开始看。
2)《奥赛经典》
内容比较全面,例题选取也比较新,难度也较高,适合着眼于联赛二试和冬令营的同学们;代数部分可以做为《奥赛小丛书》的补充。几何还可以,但定理可以只记最基本的,拓展的可以不记。组合,数论有时间可以看看,不过很多都和小丛书重复,没时间就算了。
3)《命题人讲座》
适合系统学习,冲刺冬令营,但没必要每本都做,挑其中较好的做便可。如《解析几何》、《函数迭代与函数方程》、《数列与数学归纳法》、《组合问题》、《三角函数与复数》、《向量与立体几何》、《初等数论》。
其中《初等数论》是目前数论方面非常系统、难度较高的一本书,很多学生读后也感觉受益匪浅。数论方面当然不能不提两位先生,一位是潘承彪教授,一位是余红兵教授,潘老师的《初等数论》是我们读书时的必读教材,也是大学里的教材,不仅仅局限于竞赛范畴;余老师关于数论的小册子《数学竞赛中的数论问题》,非常经典!
另外华罗庚的《数论导引》则非常优秀,适合看完《初等数论》后再深化学习。此外非常值得推荐的是《哈代数论》,值得永世珍藏。
4)《数学竞赛研究教程(套装上下册)》
本书是参加数学竞赛的教练员和选手的`必备用书。国内数学竞赛研究方面的权威参考书。
5)关于几何
《初等数学复习及研究平面几何》、《初等数学复习及研究立体几何》。有助于深化系统自己的几何基础。
6)关于组合
推荐单樽老师的《组合几何》《趣味图论》,以上均为上面提到过的数学奥赛辅导丛书的书,那一个系列基本上都非常出色,适合永世珍藏。
实战演练
1)《高中数学联赛备考手册》
这本书当然不能错过。各省预赛试题集锦。
2)高中数学竞赛专题讲座
浙大小红本。
3)《走向IMO》
收集国内最高层次数学竞赛试题和国外数学奥林匹克试题,难度非常大。需注意千万不要陷于题目中,题目背后的思想方法往往更精彩、更有益。
4)历届CMO/IMO试题集
当然,准备联赛实战的同学还有很多参考书,例如《奥数精讲与测试》、《备考手册》、《几何瑰宝:平面几何500名题暨1000条定理》和《世界著名平面几何经典著作钩沉》等等;俄罗斯(苏联)的赛题也是很好的素材,其中的组合题适合不限年级的随时思考选用……
【数学竞赛怎么学】相关文章:
怎么策划高一数学竞赛02-24
高三数学怎么学09-01
怎么教小孩学数学范文01-18
高一数学怎么学03-06
数学竞赛试卷07-04
数学竞赛试题04-23
教教你初二数学怎么学06-14
初中数学怎么学才能学得好08-31
高一数学应该怎么学03-08