数学 百文网手机站

高一数学函数相关知识点分析

时间:2021-07-19 15:40:35 数学 我要投稿

高一数学函数相关知识点分析

  一、增函数和减函数

高一数学函数相关知识点分析

  一般地,设函数f(x)的定义域为I:

  如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)<f(x2).那么就说f(x)在 这个区间上是增函数。

  如果对于属于I内某个区间上的任意两个自变量的值x1、x2,当x1<x2时都有f(x1)>f(x2).那么就是f(x)在这个区间上是减函数。

  二、单调区间

  单调区间是指函数在某一区间内的函数值Y,随自变量X增大而增大(或减小)恒成立。如果函数y=f(x)在某个区间是增函数或减函数。那么就说函数y=f(x)在这一区间具有(严格的`)单调性,这一区间叫做y= f(x)的单调区间。

  一、指数函数的定义

  指数函数的一般形式为y=a^x(a0且≠1) (x∈R).

  二、指数函数的性质

  1.曲线沿x轴方向向左无限延展〈=〉函数的定义域为(-∞,+∞)

  2.曲线在x轴上方,而且向左或向右随着x值的减小或增大无限靠近X轴(x轴是曲线的渐近线)〈=〉函数的值域为(0,+∞)

  一、对数与对数函数定义

  1.对数:一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

  2.对数函数:一般地,函数y=log(a)X,(其中a是常数,a0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,因此指数函数里对于a的规定,同样适用于对数函数。

  二、方法点拨

  在解决函数的综合性问题时,要根据题目的具体情况把问题分解为若干小问题一次解决,然后再整合解决的结果,这也是分类与整合思想的一个重要方面。

  一、幂函数定义

  形如y=x^a(a为常数)的函数,即以底数为自变量 幂为因变量,指数为常量的函数称为幂函数。

  二、性质

  幂函数不经过第三象限,如果该函数的指数的分子n是偶数,而分母m是任意整数,则y0,图像在第一;二象限.这时(-1)^p的指数p的奇偶性无关.

  如果函数的指数的分母m是偶数,而分子n是任意整数,则x0(或xy0(或y=0),图像在第一象限.与p的奇偶性关系不大,

【高一数学函数相关知识点分析】相关文章:

数学函数与导数知识点分析10-15

高一数学函数知识点02-18

数学高一函数知识点整理02-22

高一数学函数与方程知识点07-22

高一数学函数的知识点整合07-22

高一数学函数知识点复习07-23

数学集合与函数概念高一知识点07-22

高一数学函数与方程的知识点07-22

高一数学函数知识点小结06-15