- 相关推荐
八年级上册数学期末试卷附答案
无论是在学习还是在工作中,我们总免不了要接触或使用试卷,在各领域中,只要有考核要求,就会有试卷,试卷是命题者按照一定的考核目的编写出来的。一份好的试卷都是什么样子的呢?以下是小编收集整理的八年级上册数学期末试卷附答案,希望能够帮助到大家。
八年级上册数学期末试卷附答案 1
一、选择题(每小题3分,共36分)
1、下列计算正确的是( )
A、 B、 C、 D、
2、下列说法:
①5是25的算术平方根;② 是 的一个平方根;③ 的平方根是 ;④0的平方根与算术平方根是0;正确的有( )
A、1个 B、2个 C、3个 D、4个
3、函数 中自变量x的取值范围是( )
A、 B、 C、 D、
4、对称现象无处不在,请你观察下面的四个图形,它们体现了中华民族的传统文化,其中,可以看作是轴对称图形的有( )
A、1个 B、2个 C、3个 D、4个
5、已知:一次函数 的图象如图所示,那么, 的取值范围是( )
A、 B、 C、 D、
6、如图,点 是 上任意一点, ,还应补充一个条件,才能推出 .从下列条件中补充一个条件,不一定能推出 的是( )
A、
B、
C、
D、
7、下列多项式中,不能进行因式分解的是( )
A、 B、 C、 D、
8、如图,在△ABC中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是( )
A、45° B、60°
C、50° D、55°
9、点 、 在直线 上,若 ,则 与 大小关系是( )
A、 B、 C、 D、无法确定
10、如图,锐角△ABC的高AD、BE相交于F,若BF=AC,BC=7,CD=2,则AF的长为( )
A、2 B、3
C、4 D、5
11、济南市某储运部紧急调拨一批物资,调进物资共用4小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(小时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的.时间是( )
A、4小时 B、4.4小时
C、4.8小时 D、5小时
12、如图,在△ABC中,AC=BC,∠ ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC交AC的延长线于M,连接CD,给出四个结论:①∠ADC=45°;②BD= AE;③AC+CE=AB;④ ;其中正确的结论有( )
A、1个 B、2个 C、3个 D、4个
二、填空题(每小题3分,共12分)
13、已知 是完全平方式,则 。
14、如图,已知函数 和 的图像交于点 ,则根据图像可得不等式 的解集是 .
15、观察下列图形:
第1个图形 第2个图形 第3个图形 第4个图形
它们是按一定规律排列的,依照此规律,第20个图形共有 个★.
16、已知,一次函数 的图像与正比例函数 交于点A,并与y轴交于点 ,△AOB的面积为6,则 。
八年级上册数学期末试卷附答案 2
(满分:150分,时间:120分钟)
一、选择题(每小题3分,共24分)每题有且只有一个答案正确,请把你认为正确的答案前面的字母填入答题卡相应的空格内.
1.不等式 的解集是( )
A B C D
2.如果把分式 中的x和y都扩大2倍,那么分式的值( )
A 扩大2倍 B 不变 C 缩小2倍 D 扩大4倍
3. 若反比例函数图像经过点 ,则此函数图像也经过的点是( )
A B C D
4.在 和 中, ,如果 的周长是16,面积是12,那么 的周长、面积依次为( )
A 8,3 B 8,6 C 4,3 D 4,6
5. 下列命题中的假命题是( )
A 互余两角的和 是90° B 全等三角形的面积相等
C 相等的角是对顶角 D 两直线平行,同旁内角互补
6. 有一把钥匙藏在如图所示的16块正方形瓷砖的某一块下面,则钥匙藏在黑色瓷砖下面的概率是( )
A B C D
7.为抢修一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车,问原计划每天修多少米?若设原计划每天修x米,则所列方程正确的是 ( )
A B C D
8.如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为 ( )
A 1 B 2 C 2.5 D 3
二、填空题(每小题3分,共30分)将答案填写在答题卡相应的横线上.
9、函数y= 中, 自变量 的取值范围是 .
10.在比例尺为1∶500000的中国地图上,量得江都市与扬州市相距4厘米,那么江都市与扬州市两地的实际相距 千米.
11.如图1, , ,垂足为 .若 ,则 度.
12.如图2, 是 的 边上一点,请你添加一个条件: ,使 .
13.写出命题“平行四边形的对角线互相平分”的.逆命题: _______________
__________________________________________________________.
14.已知 、 、 三条线段,其中 ,若线段 是线段 、 的比例中项,则 = .
15. 若不等式组 的解集是 ,则 .
16. 如果分式方程 无解,则m= .
17. 在函数 ( 为常数)的图象上有三个点(-2, ),(-1, ),( , ),函数值 , , 的大小为 .
18.如图,已知梯形ABCO的底边AO在 轴上,BC∥AO,AB⊥AO,过点C的双曲线 交OB于D,且 ,若△OBC的面积等于3,则k的值为 .
三、解答题(本大题10小题,共96分)解答应写出文字说明、证明过程或演算步骤.
19.(8分)解不 等式组 ,并把解集在数轴上表示出来.
20.(8分)解方程:
21.(8分)先化简,再求值: ,其中 .
22.(8分) 如图,在正方形网格中,△OBC的顶点分别为O(0,0), B(3,-1)、C(2,1).
(1)以点O(0,0)为位似中心,按比例尺2:1在位似中心的异侧将△OBC放大为△OB′C′ ,放大后点B、C两点的对应点分别为B′、C′ ,画出△OB′C′,并写出点B′、C′的坐标:B′( , ),C′( , );
(2)在(1)中,若点M(x,y)为线段BC上任一点,写出变化后点M的对应点M′的坐标( , ).
23.(10分)如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.
能否由上面的已知条件证明AB∥ED?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使AB∥ED成立,并给出证明.
供选择的三个条件(请从其中选择一个):
①AB=ED;
②BC=EF;
③∠ACB=∠DFE.
24.(10分)有A、B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字 , 和-4.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y= 上的概率.
25.(10分)如图,已知反比例函数 和一次函数 的图象相交于第一象限内的点A,且点A的横坐 标为1. 过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式;
(2)若一次函数 的图象与x轴相交于点C,求∠ACO的度数;
(3)结合图象直接写出:当 > >0 时,x的取值范围.
26.(10分)小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:
如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD= ,CE= ,CA= (点A、E、C在同一直线上).
已知小明的身高EF是 ,请你帮小明求出楼高AB.
27.(12分)某公司为了开发新产品,用A、B两种原料各360千克、290千克,试制甲、乙两种新型产品共50件,下表是试验每件新产品所需原料的相关数据:
A(单位:千克) B(单位:千克)
甲 9 3
乙 4 10
(1)设生产甲种产品x件,根据题意列出不等式组,求出x的取值范围;
(2)若甲种产品每件成本为70元,乙种产品每件成本为90元,设两种产品的成本总额为y元,求出成本总额y(元) 与甲种产品件数x(件)之间的函数关系式;当甲、乙两种产品各生产多少件时,产品的成本总额最少?并求 出最少的成本总额.
28.(12分)如图1,在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆 放在一起,A为公共顶点,∠BAC=∠AGF=90°,它们的斜边长为 ,若ABC固定不动,AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合),设BE=m,CD=n
(1)请在图1中找出两对相似而不全等的三角形,并选取其中一对证明它们相似 ;
(2)根据图1,求m与n的函数关系式,直接写出自变量n的取值范围;
(3)以ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2). 旋转AFG,使得BD=CE,求出D点的坐标,并通过计算验证 ;
(4)在旋转过程中,(3)中的等量关系 是否始终成立,若成立,请证明,若不成立,请说明理由.
八年级数学参考答案
一、选择题(本大题共8小题,每小题3分,共24分)
题号 1 2 3 4 5 6 7 8
答案 D B D A C C A D
二、填空题(本大题共10小题,每题3分,共30分)
9、x≠1 10、20 11、40 12、 或 或
13、对角线互相平分的四边形是平行四边形。 14、4 15、-1
16、-1 17、 18、
三、解答题:(本大题有8题,共96分)
19、解:解不等式①,得 . …………………………………… 2分
解不等式②,得 . …………………………………… 4分
原不等式组的解集为 . ………………………………… 6分
在数轴上表示如下:略 …………………………………… 8分
20、解: 方程两边同乘 得 …………4分
解得 …………7分
经检验 是原方程的根 …………8分
21.解:原式= 2分
= 4分
= 6分
当 时,上式=-2 8分
22.(1)图略(2分), B’( -6 , 2 ),C’( -4 , -2 ) 6分
(2)M′( -2x,-2y ) 8分
23.解:由上面两条件不能证明AB//ED. ……………………………………… 1分
有两种添加方法.
第一种:FB=CE,AC=DF添加 ①AB=ED ………………………………………… 3分
证明:因为FB=CE,所以BC=EF,又AC=EF,AB=ED,所以△ABC≌△DEF
所以∠ABC=∠DEF 所以AB//ED …………………………………………… 10分
第二种:FB=CE,AC=DF添加 ③∠ACB=∠DFE ……………………… 3分
证明:因为FB=CE,所以BC=EF,又∠ACB=∠DFE AC=EF,所以△ABC≌△DEF
所以∠ABC=∠DEF 所以AB//ED ………………………………………………… 10分
24.解(1)
B
A -2 -3 -4
1 (1,-2) (1,-3) (1,-4)
2 (2,-2) (2,-3) (2,-4)
(两图选其一)
……………4分(对1个得1′;对2个或3个,得2′;对4个或5个得3′;全对得4′)
(2)落在直线y= 上的点Q有:(1,-3);(2,-4) 8分
∴P= = 10分
25.(1)y = , y = x + 1 4分( 答对一个解析式得2分)
(2)45 7分
(3)x>1 10分
26.解:过点D作DG⊥AB,分别交AB、EF于点G、H,则EH=AG=CD=1,DH=CE=0.8,DG=CA=40,∵EF∥AB,∴ ,由题意,知FH=EF-EH=1.6-1=0.6,∴ ,解得 BG=30,…………………………………………8分
∴AB=BG+AG=30+1=31.
∴楼高AB为31米.…………………………………………10分
27.解:(1)由题意得 3分
解不等式组得 6分
(2) 8分
∵ ,∴ 。
∵ ,且x为整数,∴当x=32时, 11分
此时50-x=18,生产甲种产品32件,乙种产品18件。 12分
28、解:(1)ABE∽DAE, ABE∽DCA 1分
∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°∴∠BAE=∠CDA 又∠B=∠C=45°
∴ABE∽DCA 3分
(2)∵ABE∽DCA ∴ 由依题意可知
∴ 5分
自变量n的取值范围为 6分
(3)由BD=CE可得BE=CD,即m=n ∵ ∴ ∵OB=OC= BC= 8分
9分
(4)成立 10分
证明:如图,将ACE绕点A顺时针旋转90°至ABH的位置,则CE=HB,AE=AH,∠ABH=∠C=45°,旋转角∠EAH=90°. 连接HD,在EAD和HAD中
∵AE=AH, ∠HAD=∠EAH-∠FAG=45°=∠EAD, AD=AD.∴EAD≌HAD
∴DH=DE 又∠HBD=∠ABH+∠ABD=90°
∴BD +HB =DH 即BD +CE =DE 12分
【八年级上册数学期末试卷附答案】相关文章:
九年级数学上册期末试卷附答案06-26
五年级上册英语期末试卷附答案201603-23
2024最新初二语文上册期末试卷附答案(通用5套)01-25
八年级上册政治期末试卷及答案08-05
人教版八年级上册数学期末试卷及答案06-25
八年级上册英语期末试卷及答案02-11
2022-2023年九年级英语上册期末试卷「附答案」11-16
苏教版八年级上册政治的期末试卷及答案06-25