初中奥数答案参考
例1.已知:△ABC中,∠B=2∠C,AD是高
求证:DC=AB+BD
分析一:用分解法,把DC分成两部分,分别证与AB,BD相等。
可以高AD为轴作△ADB的对称三角形△ADE,再证EC=AE。
∵∠AEB=∠B=2∠C且∠AEB=∠C+∠EAC,∴∠EAC=∠C
辅助线是在DC上取DE=DB,连结AE。
分析二:用合成法,把AB,BD合成一线段,证它与DC相等。
仍然以高AD为轴,作出DC的对称线段DF。
为便于证明,辅助线用延长DB到F,使BF=AB,连结AF,则可得
∠ABD=2∠F=2∠C。
例2.已知:△ABC中,两条高AD和BE相交于H,两条边BC和AC的中垂线相交于O,垂足是M,N
求证:AH=2MO, BH=2NO
证明一:(加倍法――作出OM,ON的2倍)
连结并延长CO到G使OG=CO连结AG,BG
则BG∥OM,BG=2MO,AG∥ON,AG=2NO
∴四边形AGBH是平行四边形,
∴AH=BG=2MO,BH=AG=2NO
证明二:(折半法――作出AH,BH的一半)
分别取AH,BH的中点F,G连结FG,MN
则FG=MN= AB,FG∥MN∥AB
又∵OM∥AD,
∴∠OMN=∠HGF(两边分别平行的两锐角相等)
同理∠ONM=∠HFG∴△OMN≌△HFG……
例3. 已知:在正方形ABCD中,点E在AB上且CE=AD+AE,F是AB的中点
求证:∠DCE=2∠BCF
分析:本题显然应着重考虑如何发挥CE=AD+AE条件的作用,如果只想用加倍法或折半法,则脱离题设的`条件,难以见效。
我们可将AE(它的等量DG)加在正方形边CD的延长线上(如左图)也可以把正方形的边CD(它的等量AG)加在AE的延长线上(如右图)后一种想法更容易些。
辅助线如图,证明(略)自己完成
例4.已知:△ABC中,∠B和∠C的平分线相交于I,
求证:∠BIC=90 + ∠A
证明一:(由左到右)
∠BIC=180 -(∠1+∠2)=180 - (∠ABC+∠ACB)
=180 - (∠ABC+∠ACB+∠A)+ ∠A
=90 + ∠A
证明二:(左边-右边=0)
∠BIC-(90 + ∠A)
=180 - (∠ABC+∠ACB)-90 - ∠A
=90 - (∠ABC+∠ACB+∠A)=……
证明三:(从已知的等式出发,进行恒等变形)
∵∠A+∠ABC+∠ACB=180 ∴∠A=180 -(∠ABC+∠ACB)
∠A=90 - (∠ABC+∠ACB)
90 + ∠A=180 - (∠ABC+∠ACB),即∠BIC=90 + ∠A
【初中奥数答案参考】相关文章:
小学奥数答案参考07-30
初中奥数答案07-21
数学的奥数题及答案参考04-14
《放牧》的奥数题及答案参考07-22
棋子的奥数题及答案参考07-25
跑步奥数题及答案参考07-26
数卖马的奥数题及答案参考07-23
初中奥数题目及答案01-27
奥数题及参考答案:数阵图问题07-19