- 相关推荐
小升初奥数余数同余要点总结
总结是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认识的一种书面材料,他能够提升我们的书面表达能力,我想我们需要写一份总结了吧。那么总结有什么格式呢?下面是小编帮大家整理的小升初奥数余数同余要点总结,仅供参考,大家一起来看看吧。
小升初奥数余数同余要点总结
一、同余的定义:
①若两个整数a、b除以m的余数相同,则称a、b对于模m同余。
②已知三个整数a、b、m,如果m|a-b,就称a、b对于模m同余,记作a≡b(mod m),读作a同余于b模m。
二、同余的性质:
①自身性:a≡a(mod m);
②对称性:若a≡b(mod m),则b≡a(mod m);
③传递性:若a≡b(mod m),b≡c(mod m),则a≡ c(mod m);
④和差性:若a≡b(mod m),c≡d(mod m),则a+c≡b+d(mod m),a-c≡b-d(mod m);
⑤相乘性:若a≡ b(mod m),c≡d(mod m),则a×c≡ b×d(mod m);
⑥乘方性:若a≡b(mod m),则an≡bn(mod m);
⑦同倍性:若a≡ b(mod m),整数c,则a×c≡ b×c(mod m×c);
三、关于乘方的预备知识:
①若A=a×b,则MA=Ma×b=(Ma)b
②若B=c+d则MB=Mc+d=Mc×Md
四、被3、9、11除后的余数特征:
①一个自然数M,n表示M的各个数位上数字的和,则M≡n(mod 9)或(mod 3);
②一个自然数M,X表示M的各个奇数位上数字的和,Y表示M的各个偶数数位上数字的和,则M≡Y-X或M≡11-(X-Y)(mod 11);
五、费尔马小定理:
如果p是质数(素数),a是自然数,且a不能被p整除,则ap-1≡1(mod p)。
余数知识点
对于任意一个整数除以一个自然数,一定存在唯一确定的商和余数,使被除数=除数×商+余数(0≤余数除数),也就是说,整数a除以自然数b,一定存在唯一确定的q和r,使a=bq+r(0≤r
我们把对于已知整数a和自然数b,求q和r,使a=bq+r(0≤r
例如5÷7=0(余5),6÷6=1(余0),29÷5=5(余4).
解决有关带余问题时常用到以下结论:
(1)被除数与余数的差能被除数整除.即如果a÷b=q(余r),那么b|(a-r).
因为a÷b=q(余r),有a=bq+r,从而a-r=bq,所以b|(a-r).
例如39÷5=7(余4),有39=5×7+4,从而39-4=5×7,所以5|(39-4)
(2)两个数分别除以某一自然数,如果所得的余数相等,那么这两个数的差一定能被这个自然数整除.即如果a1÷b=q1(余r),a2÷b=q2(余r),那么b|(a1-a2),其中a1≥a2.
因为a1÷b=q1(余r),a2÷b=q2(余r),有a1=bq1+r,a2=bq2+r,从而a1-a2=(bql+r)-(bq2+r)=b(q1-q2),所以b|(a1-a2).
例如,22÷3=7(余1),28÷3=9(余1),有22=3×7+1,28=3×9+1,从而28-22=3×9-3×7=3×(9-7),所以3|(28-22).
(3)如果两个数a1和a2除以同一个自然数b所得的余数分别为r1和r2,r1与r2的和除以b的余数是r,那么这两个数a1与a2的和除以b的余数也是r.
例如,18除以5的余数是3,24除以5的余数是4,那么(18+24)除以5的余数一定等于(3+4)除以5的余数(余2).
(4)被除数和除数同时扩大(或缩小)相同的倍数,商不变,余数的也随着扩大(或缩小)相同的倍数.即如果a÷b=q(余r),那么(am)÷(bm)=q(余rm),(a÷m))÷(b÷m)=q(余r÷m)(其中m|a,m|b).
例如,14÷6=2(余2),那么(14×8)÷(6×8)=2(余2×8),(14÷2)÷(6÷2)=2(余2÷2).
下面讨论有关带余除法的问题.
例1 节日的街上挂起了一串串的彩灯,从第一盏开始,按照5盏红灯,4盏黄灯,3盏绿灯,2盏蓝灯的顺序重复地排下去,问第1996盏灯是什么颜色?
分析:因为彩灯是按照5盏红灯,4盏黄灯,3盏绿灯,2盏蓝灯的顺序重复地排下去,要求第1996盏灯是什么颜色,只要用1996除以5+4+3+2的余数是几,就可判断第1996盏灯是什么颜色了.
解:1996÷(5+4+3+2)=142…4
所以第1996盏灯是红色.
【小升初奥数余数同余要点总结】相关文章:
小升初奥数知识之余数与同余05-28
小升初奥数知识点讲解—余数及其应用10-13
精选小升初奥数题06-07
小升初奥数题型06-08
精选小升初奥数的介绍10-04
带余数的除法奥数题10-25
关于奥数与小升初的关系06-08
关于小升初的奥数题07-12
小升初奥数解题思路10-16