数学 百文网手机站

三年级奥数题及答案

时间:2021-07-07 18:25:56 数学 我要投稿

三年级奥数题精选及答案

三年级奥数题精选及答案1

  一个长方体的水槽可容水480吨.水槽装有一个进水管和一个排水管.单开进水管8小时可以把空池注满;单开排水管6小时可把满池水排空.两管齐开需多少小时把满池水排空?

  【答案解析】

  分析:要求两管齐开需要多少小时把满池水排光,关键在于先求出进水速度和排水速度.当两管齐开时要把满池水排空,排水速度必须大于进水速度,即单位时间内排出的水等于进水与排水速度差.解决了这个问题,又知道总水量,就可以求出排空满池水所需时间。

  解:①进水速度:480÷8=60(吨/小时)

  ②排水速度:480÷6=80(吨/小时)

  ③排空全池水所需的时间:480÷(80-60)=24(小时)

  列综合算式:

  480÷(480÷6-480÷8)=24(小时)

  答:两管齐开需24小时把满池水排空。

三年级奥数题精选及答案2

  1、难度:

  某人要到一座高层楼的第8层办事,不巧停电,电梯停开,如从1层走到4层需要48秒,请问以同样的速度走到八层,还需要多少秒?

  2、难度:

  晶晶上楼,从1楼走到3楼需要走36级台阶,如果各层楼之间的台阶数相同,那么晶晶从第1层走到第6层需要走多少级台阶?

  【答案解析】

  1、【答案】

  分析:要求还需要多少秒才能到达,必须先求出上一层楼梯需要几秒,还要知道从4楼走到8楼共走几层楼梯.上一层楼梯需要:48÷(4-1)=16(秒),从4楼走到8楼共走8-4=4(层)楼梯。到这里问题就可以解决了。

  解:上一层楼梯需要:48÷(4-1)=16(秒)

  从4楼走到8楼共走:8-4=4(层)楼梯

  还需要的时间:16×4=64(秒)

  答:还需要64秒才能到达8层。

  2、【答案】

  分析:要求晶晶从第1层走到第6层需要走多少级台阶,必须先求出每一层楼梯有多少台阶,还要知道从一层走到6层需要走几层楼梯。

  从1楼到3楼有3-1=2层楼梯,那么每一层楼梯有36÷2=18(级)台阶,而从1层走到6层需要走6-1=5(层)楼梯,这样问题就可以迎刃而解了。

  解:每一层楼梯有:36÷(3-1)=18(级台阶)

  晶晶从1层走到6层需要走:18×(6-1)=90(级)台阶。

  答:晶晶从第1层走到第6层需要走90级台阶。

三年级奥数题精选及答案3

  一大块金帝牌巧克力可以分成若干大小一样的正方形小块。小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。那么他们开始吃第1小块的时间是几时几分?

  分析:小明每隔20分钟吃1小块,小强每隔30分钟吃1小块,小强比小明多间隔10分钟,小明14时40分吃最后1小方块,小强18时吃最后1小方块,小强比小明晚3小时20分,说明在吃最后一块前面共有(3*60+20)/10=20个间隔,即已经吃了20块。那么,20*20=400分钟=6小时40 分钟,14时40分-6小时40分=8时。

  解:18时-14时40分=3小时20分=3*60+20=200分钟,已经吃的块数=200/(30-20)=20块,小明吃20块用时20*20=400分钟=6小时40分钟,开始吃第一块的时间为14时40分-6小时40分=8时。

三年级奥数题精选及答案4

  分类枚举,就是依据一定的标准把题目的答案分为几种类型,一一列举出来。分类枚举的方法主要用来解决一些排列组合的问题,列举时要有序分类,保证答案既不遗漏又不重复,其中分类标准的确定是解题的关键,同一题因标准不同可能有不同的分类方法,好的分类方法会使解题过程变得更加简单。学会分类枚举,不仅可以解决本讲的问题,遇到更复杂问题时,我们也可以用列举的方法找出部分答案,然后在已有答案中发现规律,从而进一步寻求解题方案。

  【题目】:

  把10只鸽子关在3个同样的笼子里,使得每个笼子里都有鸽子,可以有多少种不同的放法?

  【解析】:

  这里笼子都是同样的,因此3只笼子是无序的。

  因为10÷3=3……1,根据题中条件,可得鸽子最少的那个笼子里的鸽子不多于3只,不少于1只,我们可以这样分为三类:

  一、鸽子最少的那个笼子里有1只鸽子,共有4种放法:①1只、1只、8只;②1只、2只、7只;③1只、3只、6只;④1只、4只、5只。

  二、鸽子最少的那个笼子里有2只鸽子,共有3种放法:①2只、2只、6只;②2只、3只、5只;③2只、4只、4只。

  三、鸽子最少的那个笼子里有3只鸽子,共有1种放法:①3只、3只、4只。

  所以共有放法:4+3+1=8(只)。

  【题目】:

  有一架天平和三只重量分别为1克,3克,6克的砝码,你知道用这架天平和这些砝码共能称出多少种重量吗?

  【解析】:

  这一题要在孩子学习了三上第三单元,认识了常见的称和质量单位后,再学习比较合适。如果超前完成,需要对孩子介绍一下天平的用法。

  因为1克+3克+6克=10克,所以这架天平最重能称出10克,最轻能称出1克。因此这架天平最多能称出1克到10克之间的10种不同重量的物体,然后我们再对这10类情况进行验证:

  ①天平左边:物体 右边:1克砝码 能称出1克重的物体;

  ②天平左边:物体+1克砝码 右边:3克砝码 能称出2克重的物体;

  ③天平左边:物体 右边:3克砝码 能称出3克重的物体;

  ④天平左边:物体 右边:3克砝码+1克砝码 能称出4克重的物体;

  ⑤天平左边:物体+1克砝码 右边:6克砝码 能称出5克重的物体;

  ⑥天平左边:物体 右边:6克砝码 能称出6克重的物体;

  ⑦天平左边:物体 右边:6克砝码+1克砝码 能称出7克重的物体;

  ⑧天平左边:物体+1克砝码 右边:6克砝码+3克砝码 能称出8克重的物体;

  ⑨天平左边:物体 右边:6克砝码+3克砝码 能称出9克重的物体;

  ⑩天平左边:物体 右边:6克砝码+3克砝码+1克砝码 能称出10克重的物体。

  在列举的过程中可以让孩子慢慢的领悟规律:有1克和3克的砝码,不仅可以称出1克和3克重的物体,还可以称出重量是1克和3克的和或差的物体,依此类推。

  所以这架天平最多能称出10种不同重量的物体。

  【题目】:

  1997 的数字和是1+9+9+7=26,在小于20xx的四位数中,数字和为26的除了1997外还有几个?

  【解析】:

  小于20xx的`四位数都是一千多,千位上都是1。数字和为26,26-1=25,个、十、百三位上的数字和为25。25-9-9=7,因此三个数位上数字最小不能小于7,最大不能大于9。我们根据百位上数字的大小分为三类:

  一、百位上数字是7,有1个:1799;

  二、百位上数字是8,有2个:1889、1898;

  三、百位上数字是9,有3个:1979、1988、1997;(千位和百位上的数字确定后,十位上数字再按从小到大枚举出所有情况。)

  所以符合条件的数共有6个,除了1997外,还有5个。

三年级奥数题精选及答案5

  三年级奥数题:和差倍数问题(一)

  1、南京长江大桥共分两层,上层是公路桥,下层是铁路桥。铁路桥和公路桥共长11270米,铁路桥比公路桥长2270米,问南京长江大桥的公路和铁路桥各长多少米?

  2、三个小组共有180人,一、二两个小组人数之和比第三小组多20人,第一小组比第二小组少2人,求第一小组的人数。

  3、甲、乙两筐苹果,甲筐比乙筐多19千克,从甲筐取出多少千克放入乙筐,就可以使乙筐中的苹果比甲筐的多3千克?

  三年级奥数题:和差倍数问题(二)

  1、在一个减法算式里,被减数、减数与差的和等于120,而减数是差的3倍,那么差等于多少?

  2、已知两个数的商是4,而这两个数的差是39,那么这两个数中较小的一个是多少?

  3、姐姐做自然练习比妹妹做算术练习多用48分钟,比妹妹做英语练习多用42分钟,妹妹做算术、英语两门练习共用了44分钟,那么妹妹做英语练习用了多少分钟?

  三年级奥数题:和差倍数问题(三)

  1、已知△,○,□是三个不同的数,并且△+△+△=○+○,○+○+○+○=□+□+□,△+○+○+□=60,那么△+○+□等于多少?

  2、用中国象棋的车、马、炮分别表示不同的自然数。如果,车÷马=2,炮÷车=4,炮-马=56,那么“车+马+炮”等于多少?

  3、聪聪用10元钱买了3支圆珠笔和7本练习本,剩下的钱若买一支圆珠笔就少1角4分;若买一本练习本还多8角,问一支圆珠笔的售价是多少元?

  三年级奥数题:和差倍数问题(四)

  1、甲、乙两位学生原计划每天自学的时间相同,若甲每天增加自学时间半小时,乙每天减少自学时间半小时,则乙自学6天的时间仅相等于甲自学一天的时间。问:甲、乙原订每天自学的时间是多少分钟?

  2、一大块金帝牌巧克力可以分成若干大小一样的正方形小块。小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。那么他们开始吃第1小块的时间是几时几分?

  三年级奥数题:速算与巧算

  【试题】巧算与速算:41×49=( )

  三年级奥数题:植树问题

  【试题】一块三角形地,三边分别长156米,234米,186米,要在三边上植树,株距6米,三个角的顶点上各植上1棵数,共植树( )棵。

  三年级奥数应用题解题技巧(一)

  【试题】一台拖拉机5小时耕地40公顷,照这样的速度,耕72公顷地需要几小时?

  三年级奥数应用题解题技巧(二)

  【试题】纺织厂运来一堆煤,如果每天烧煤1500千克,6天可以烧完。如果每天烧1000千克,可以多烧几天?

  三年级奥数应用题解题技巧(三)

  【试题】把7本相同的书摞起来,高42毫米。如果把28本这样的书摞起来,高多少毫米?(用不同的方法解答)

  三年级奥数应用题解题技巧(四)

  【试题】两个车间装配电视机。第一车间每天装配35台,第二车间每天装配37台。照这样计算,这两个车间15天一共可以装配电视机多少台?

  三年级奥数应用题解题技巧(五)

  【试题】同学们到车站义务劳动,3个同学擦12块玻璃。(补充不同的条件求问题,编成两道不同的两步计算应用题)。

  补充1:“照这样计算,9个同学可以擦多少块玻璃?”

  补充2:“照这样计算,要擦40块玻璃,需要几个同学?”

  三年级奥数应用题解题技巧(六)

  【试题】小华每分拍球25次,小英每分比小华少拍5次。照这样计算,小英5分拍多少次?小华要拍同样多次要用几分?

  三年级奥数应用题解题技巧(七)

  【试题】 刘老师搬一批书,每次搬15本,搬了12次,正好搬完这批书的一半。剩下的书每次搬20本,还要几次才能搬完?

三年级奥数题精选及答案6

  牛过河奥数题及答案

  小明要赶四头牛过河,这四头牛分别所用的时间是2分钟,4分钟,6钟,8分钟,可是一条河同一时间只能容两头牛,请问至少能用多少时间把四头牛都赶过河?

  答案与解析:

  最新的的小学三年级牛过河奥数题及答案:方法有多种,首先确定用8分钟和6分钟的那两头牛过河时一定可以同时安排用2分钟和4分钟过河的牛;至少需要10分钟四头牛都能赶过河。方法不唯一:可以先把用2和4分钟的牛赶下河,2分钟后再赶下用8分钟的牛下河,又2分钟后赶下用6分钟的牛,6分钟后同时上岸。所需时间是2+2+6=10(分钟)。也可以用4+4+2=10的方案,先赶下用4、8分钟的牛下河,4分钟后赶下用6分钟的牛下河,又4分钟后,赶下最后一头牛,2分钟后同时上岸。

  求用最少时间的问题,一般先考虑在做哪件事情的时候可以同时做另外一件事情,然后排出一种方案,再考虑是否有用时更少的方案,最后检验得出结果。

三年级奥数题精选及答案7

  这篇,是特地为大家整理的学生三年级奥数题及答案-棋子,希望对大家有所帮助!

  若干个同样的盒子排成一排,小明把五十多个同样的棋子分装在盒中,其中只有一个盒子没有装棋子,然后他外出了。小光从每个有棋子的盒子里各拿一个棋子放在空盒内,再把盒子重新排了一下。小明回来仔细查看了一番,没有发现有人动过这些盒子和棋子。问共有多少个盒子?

  答案与解析:

  答案:原来有个空的,说明现在也有个空的;

  现在空的说明原来这盒有1个,当然现在也必须有个盒子有1个;

  现在盒中有1个,说明原来是2个,当然现在也必须有个盒子有2个;

  考虑50多,所以有0+1+2+3+4+5+6+7+8+9+10=55

  共11个盒子。

三年级奥数题精选及答案8

  巧猜数字

  五位数字中各位数字之和为42,且能被4整除的数有_______个。

  【答案解析】

  五位数字之和为42,则这个五位数中至少有2个9,至多有4个9。

  若有2个9,则另3个数字只能全为8,其中能被4整除的数必须末两位数是4的倍数,因此这样的五位数只有3个。

  若有3个9,则另两个数字之和为15,只能为8和7,但这种情况下,不能被4整除。

  若有4个9,则另一个数只能为6,因此能被4整除的数只有1个。

  综合上述情况可知,满足条件的五位数共4个。

三年级奥数题精选及答案9

  师傅、徒弟3小时合作288个零件,师傅每小时做的零件个数是徒弟的3倍。师傅和徒弟每小时各做多少个零件?

  点拨:从题目的已知条件可以求出他们每小时所做零件个数是288÷3=96(个),还可以求出他们每小时所做零件个数的倍数和。这样,我们就能根据”和倍问题“的数量关系进行解答。

  解:

  师徒两人每小时所做零件个数的和288÷3=96(个)

  师徒两人每小时所做零件个数的倍数和:4+1=4(倍)

  徒弟每小时所做的零件的个数:96÷4=24(个)

  师傅每小时所做的零件的个数:24×3=72(个)

  答:徒弟每小时做零件24个,师傅每小时做零件72个。

三年级奥数题精选及答案10

  三年级奥数和差题昆虫种类

  一只蜘蛛八条腿,一只蜻蜒有六条腿、二对翅膀,蝉有六条腿和一对翅膀。现有这三种小昆虫共18只,共有118条腿和20对翅膀,问每种小昆虫各有几只?

  答案

  这个问题比前几个问题要复杂一些。但仔细考虑,发现蜻蜓和蝉的腿条数都是6,因此可从腿的条数入手。

  假设18只全是蜘蛛,那么共有8×18=144(条)腿。但实际上只有118条,两者相差144-118=26(条),产生差异的原因是6条腿的蜻蜒和蝉都作为8条腿的蜘蛛了,每一只相差2条腿。被当作蜘蛛的蜻蜒和蝉共有26÷2=13(只)。

  因此,蜘蛛有18-13=5(只)。

  再假设13只昆虫都是蜻蜒,应有13×2=26(对)翅膀,与实际翅膀数相差26-20=6(对),每把一只蝉当一只蜻蜒,翅膀数就增加1对,所以蝉的只数是6÷1=6(只),蜻蜓数是13-6=7(只)。

三年级奥数题精选及答案11

  小名一家四口年龄之和73岁,父亲比母亲大3岁,姐姐比弟弟大2岁,但四年前他们全家年龄之和是58岁。问他们家各人的年龄是几岁?

  答案与解析

  小名一家四年前年龄和是58,四年后应该是:4*4+58=74,

  74-73=1.比现在的年龄和多了一岁,4-1=3.这说明其中的一个人,这四年来只长了三岁才对,那这个人只能是小名了,也就是说他四年前还没出生,而现在是三岁。这样,他姐姐年龄是:3+2=5岁。

  73-5-3=65,65岁是他们父母的年龄和,因为父亲比母亲大三岁,那木齐你的年龄就是:(65-3)/2=31岁,父亲的年龄是:31+3=34岁

  答:小名3岁,姐姐5岁,母亲31岁,父亲34岁。

【三年级奥数题及答案】相关文章:

经典的奥数题及答案07-19

《说谎题》奥数题及答案07-30

奥数题及答案:质数07-20

华罗庚奥数题及答案07-25

奥数题及答案巧克力07-25

分数奥数题及答案07-22

小学奥数题及答案07-23

经典逻辑奥数题及答案07-27

奥数计数题及答案07-30

奖金的奥数题及答案07-29