数学 百文网手机站

奥数竞赛几何题的特殊解法

时间:2021-07-07 16:17:52 数学 我要投稿

奥数竞赛几何题的特殊解法

  一、等量代换法

  例1如图1,已知三角形ABC的面积为56平方厘米,是平行四边形DEFC的2倍。求阴影部分的面积。

  分析从所给的条件来看,不知道△ADE任何一条边及其所对应的高,因此很难直接求出△ADE的面积。只能从已知面积的部分与所求图形面积之间的关系来着手分析。由题意可知四边形DEFC为平行四边形,所以连接E、C点,△DEC的面积为平行四边形面积的一半。根据同底等高的三角形面积相等,可知△AED与△DEC的面积相等,而△DEC的面积等于平行四边形面积的一半,因此,△ADE的面积也等于平行四边形面积的一半。问题即可解决。

  列式:56÷2÷2=14(平方厘米)

  二、转化法

  例2如图2,四边形ABCD为长方形,BC=15厘米,CD=8厘米,三角形AFB的面积比三角形DEF的面积大30平方厘米,求DE的'长。(第三届小学生数学报竞赛决赛题)

  分析把三角形ABF和三角形DEF分别加上四边形BCDF,那么它们分别转化成长方形ABCD和三角形BCE。根据三角形ABF比三角形DEF的面积大30平方厘米,把它们分别加上四边形BCDF后,即转化成长方形ABCD比三角形BCF的面积大30平方厘米。先求出三角形BCE的面积,根据三角形的面积和BC的长度,求出CE的长度,DE的长度即可求出。列式:(15×8-30)×2÷15-8=4(平方厘米)

  三、假设法

  例3图3中长方形的面积为35平方厘米,左边直角三角形的面积为5平方厘米,右上角三角形的面积为7平方厘米,那么中间三角形(阴影部分)的面积是____平方厘米。(1996年小学数学奥林匹克竞赛初赛B卷题)

  分析因为长方形的面积为35平方厘米,不妨假设AB=5厘米,AD=7厘米,因为S△ABE=5平方厘米,所以BE=5×2÷5=2厘米,EC=7-2=5厘米,同理:DF=7×2÷5=2厘米,CF=5-2=3厘米,那么S△ECF=5×3÷2=7.5厘米,阴影部分面积即可求出。列式:35-(7+5+7.5)=15.5(平方厘米)

  四、巧用性质

  例4如图4,三角形ABC是直角三角形,已知阴影(Ⅰ)的面积比阴影(Ⅱ)的面积小23平方厘米,BC的长度是多少?(π=3.14)(北京市第三届迎春杯数学竞赛试题)

  分析此题初看似乎无法解答,因为阴影部分(Ⅰ)、(Ⅱ)都是不规则图形,但仔细观察,不难看出,阴影(Ⅰ)是半圆的一部分,阴影(Ⅱ)是三角形ABC的一部分,根据“差不变的性质”可以把(Ⅰ)和(Ⅱ)分别加(Ⅲ),分别得到半圆和△ABC,它们的面积差不变,这样就可以求出三角

【奥数竞赛几何题的特殊解法】相关文章:

五年级奥数知识点之几何竞赛题的特殊解法03-14

奥数题及答案:几何问题07-19

奥数题几何面积的计算07-23

小升初数学题及解法:特殊数题07-13

奥数题及参考答案:整除解法07-20

奥数行程问题及解法07-27

奥数几何知识及习题07-23

小学奥数几何问题选择题及答案07-23

周期问题奥数竞赛题及答案01-19