小学奥数答案参考
小学奥数答案参考1
1.将1,2,3这3个数字选出1个、2个、3个按任意次序排列出来可得到不同的一位数、二位数、三位数,请将其中的质数都写出来.
考点:合数与质数.
分析:按要求写出所有一位数,二位数,三位数,然后选出质数即可.
解答:解:一位数为:1,2,3,
二位数为:12,13,21,23,31,32,
三位数为:123,132,213,231,312,321,
其中质数为2,3,13,23,31.
点评:明确质数的含义:除了1和它本身以外,不含其它因数的数是质数;是解答此题的关键.
小学奥数答案参考2
【试题】:浓度为60%的酒精溶液200g,与浓度为30%的酒精溶液300g,混合后所得到的酒精溶液的浓度是()。
【分析】:
溶液质量=溶质质量+溶剂质量
溶质质量=溶液质量×浓度
浓度=溶质质量÷溶液质量
溶液质量=溶质质量÷浓度
要求混合后的溶液浓度,必须求出混合后溶液的总质量和所含纯酒精的质量。
混合后溶液的总质量,即为原来两种溶液质量的和:
200+300=500(g)。
混合后纯酒精的含量等于混合前两种溶液中纯酒精的和:
200×60%+300×30%=120+90=210(g)
那么混合后的酒精溶液的浓度为:
210÷500=42%
【解答】:混合后的酒精溶液的浓度为42%。
【点津】:当两种不同浓度的溶液混合后,其中的溶液总量和溶质总量是不变的。
【试题】甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
【解析】总棵数是900+1250=2150棵,每天可以植树24+30+32=86棵
需要种的天数是2150÷86=25天
甲25天完成24×25=600棵
那么乙就要完成900-600=300棵之后,才去帮丙
即做了300÷30=10天之后
即第11天从A地转到B地。
【试题】某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
【解析】甲乙合作一天完成1÷2.4=5/12,支付1800÷2.4=750元
乙丙合作一天完成1÷(3+3/4)=4/15,支付1500×4/15=400元
甲丙合作一天完成1÷(2+6/7)=7/20,支付1600×7/20=560元
三人合作一天完成(5/12+4/15+7/20)÷2=31/60,
三人合作一天支付(750+400+560)÷2=855元
甲单独做每天完成31/60-4/15=1/4,支付855-400=455元
乙单独做每天完成31/60-7/20=1/6,支付855-560=295元
丙单独做每天完成31/60-5/12=1/10,支付855-750=105元
所以通过比较
选择乙来做,在1÷1/6=6天完工,且只用295×6=1770元
小学奥数答案参考3
公式1.已知总头数和总脚数,求鸡、兔各多少:
方法一:(总脚数-每只鸡的脚数总头数)(每只兔的脚数-每只鸡的脚数)=兔数;
总头数-兔数=鸡数。
方法二:(每只兔脚数总头数-总脚数)(每只兔脚数-每只鸡脚数)=鸡数;
总头数-鸡数=兔数。
例1 有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?
解法一 (100-236)(4-2)=14(只)
36-14=22(只)鸡。
解法二 (436-100)(4-2)=22(只)
36-22=14(只)兔。
公式2.已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,求鸡、兔各多少:
方法一:(每只鸡脚数总头数-脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数
方法二:(每只兔脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只免的脚数)=鸡数;
总头数-鸡数=兔数。
公式3.已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,求鸡、兔各多少。
方法一:(每只鸡的脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数;
总头数-兔数=鸡数。
方法二:(每只兔的脚数总头数-鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=鸡数;
总头数-鸡数=兔数。(例略)
公式4.得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:
(1只合格品得分数产品总数-实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。或者是总产品数-(每只不合格品扣分数总产品数+实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?
解一 (41000-3525)(4+15)
=47519=25(个)
解二 1000-(151000+3525)(4+15)
=1000-1852519
=1000-975=25(个)(答略)
(得失问题也称运玻璃器皿问题,运到完好无损者每只给运费元,破损者不仅不给运费,还需要赔成本元。它的解法显然可套用上述公式。)
公式5.鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:
方法一:〔(两次总脚数之和)(每只鸡兔脚数和)+(两次总脚数之差)(每只鸡兔脚数之差)〕2=鸡数;
方法二:〔(两次总脚数之和)(每只鸡兔脚数之和)-(两次总脚数之差)(每只鸡兔脚数之差)〕2=兔数。
例如,有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?
解 〔(52+44)(4+2)+(52-44)(4-2)〕2
=202=10(只)鸡
〔(52+44)(4+2)-(52-44)(4-2)〕2
=122=6(只)兔(答略)
小学奥数答案参考4
年龄问题:(中等难度)
今年,祖父的年龄是小明的年龄的6倍,几年后,祖父的年龄将是小明年龄的5倍,又过几年以后,祖父的年龄将是小明的年龄的4倍,求:祖父今年是多少岁?
年龄问题答案:
【分析】祖父的年龄比小明的年龄大,两人的年龄差是不变的.因为今年祖父的年龄是小明的年龄的6倍,所以年龄差是小明年龄的5倍,从而是年龄差是5的倍数,同理,由"几年后,祖父的年龄是小明的年龄的5倍","又过几年以后,祖父的年龄是小明的年龄的4倍",知道年龄差是4、3的倍数,所以,年龄差是5×4×3=60的倍数.而60的倍数是:60,120,…,合理的选择是60,今年小明的年龄是60÷5=12(岁),祖父的年龄是12×6=72(岁).
小学奥数答案参考5
一大块金帝牌巧克力可以分成若干大小一样的正方形小块。小明和小强各有一大块金帝巧克力,他们同时开始吃第一小块巧克力。小明每隔20分钟吃1小块,14时40分吃最后1小方块;小强每隔30分钟吃1小块,18时吃最后1小方块。那么他们开始吃第1小块的时间是几时几分?
分析:小明每隔20分钟吃1小块,小强每隔30分钟吃1小块,小强比小明多间隔10分钟,小明14时40分吃最后1小方块,小强18时吃最后1小方块,小强比小明晚3小时20分,说明在吃最后一块前面共有(3*60+20)/10=20个间隔,即已经吃了20块。那么,20*20=400分钟=6小时40 分钟,14时40分-6小时40分=8时。
解:18时-14时40分=3小时20分=3*60+20=200分钟,已经吃的块数=200/(30-20)=20块,小明吃20块用时20*20=400分钟=6小时40分钟,开始吃第一块的时间为14时40分-6小时40分=8时。
小学奥数答案参考6
1、一个筑路队有13人,3天修路9.75千米,如果每人的工作效率不变,15人5天修路多少千米?
2、甲、乙两地的距离是496千米,一辆客车从甲地开往乙地,每小时行64千米,行驶1小时后,一辆货车从乙地开往甲地,每小时行56千米.货车开出几小时后与客车相遇?
1、一个筑路队有13人,3天修路9.75千米,如果每人的工作效率不变,15人5天修路多少千米?
解答:9.75÷3÷13×15×5=18.75(千米)
2、甲、乙两地的距离是496千米,一辆客车从甲地开往乙地,每小时行64千米,行驶1小时后,一辆货车从乙地开往甲地,每小时行56千米.货车开出几小时后与客车相遇?
解答:(496-64)÷(64+56)=3.6(小时)
小学奥数答案参考7
一、小学奥数应用题题型及答案:植树问题
每年的三月份是植树的好季节,在植树造林中也有有趣的数学问题。植树的情况不同,主要是由于植树线路不同。请同学们看一看,数一数下面各图中各有多少个点、多少小段。(“段”指相邻两点间的`一段,也叫间隔)再想一想点数与段数在什么情况下各有什么联系。
图(1)这条线段图上有()点,共有()段。
图(2)这条线段图上有()点,共有()段。
图(3),这个圆上有()点,共有()段。
由此看出,如果是一条没有封闭的线段,它的点数比段数多1。
如果是一个封闭的圆、长方形、正方形,由于头尾两端重合,它的点数与段数同样多。
二、四年级植树问题的奥数试题(含答案解析)
1.圆湖的周长1350米,在湖边每隔9米种柳树一棵,在两棵柳树之间种桃树2棵,两棵桃树之间的距离是().桃树和柳树各植()、()棵.
考点:植树问题.
分析:在两棵柳树之间种桃树2棵,两棵桃树之间的距离是:9÷(2+1)=3(米);柳树的间隔数是:1350÷9=150(个),那么桃树有:2×150=300(棵),柳树有150棵,据此解答.
解答:解:9÷(2+1)=3(米),
柳树的间隔数是:1350÷9=150(个),
柳树:150棵;
桃树:2×150=300(棵);
答:两棵桃树之间的距离是3米.桃树和柳树分别植300棵、150棵.
故答案为:3米,300,150.
点评:本题考查了植树问题,知识点是:栽树的棵数=间隔数-1(两端都不栽),植树的棵数=间隔数+1(两端都栽),植树的棵数=间隔数(只栽一端).
小学奥数答案参考8
1.在400米的环形跑道上,A、B两点相距100米,。甲、乙两人分别从A、B两点同时出发,按照逆时针方向跑步,甲每秒跑5米,乙每秒跑4米,每人每跑100米,都要停10秒钟。那么,甲追上乙需要的时间是多少秒?
答案:假设没有休息那么100/(5—4)=100秒钟在100/5=20秒100/20-1=4(次)100+4*10=140秒
2.小明在360米的环形跑道上跑一圈,已知他前半时间每秒跑5米,后半时间每秒跑4米,为他后半路程用了多少时间?
答案:x÷4=(360-x)÷5×=160(360÷2-160)÷5+160÷4=44分
3.林琳在450吗长的环形跑道上跑一圈,已知她前一半时间每秒跑5米,后一半时间每秒跑4米,那么她的后一半路程跑了多少秒
答案:设总时间为X,则前一半的时间为X/2,后一半时间同样为X/2
X/2*5+X/2*4=360
X=80
总共跑了80秒
前40秒每秒跑5米,40秒后跑了200米
后40秒每秒跑4米,40秒后跑了160米
后一半的路程为360/2=180米
后一半的路程用的时间为(200-180)/5+40=44秒
4.小君在360米长的环形跑道上跑一圈。已知他前一半时间每秒跑5米,后一半时间每秒跑4米。那么小君后一半路程用了多少秒?
答案:设时间X秒5X=360-4X9X=360X=40后一半时间的路程=40*4=160米后一半路程=360/2=180米后一半路程用每秒跑5米路程=180-160=20米后一半路程用每秒跑5米时间=20/5=4秒后一半路程时间=4+40=44秒答:后一半路程用了44秒
5.小明在420米长的环形跑道上跑了一圈,已知他前一半时间每秒跑8米,后一半时间每秒跑6米.求他后一半路程用了多少时间?
答案:设总用时X秒。前一半时间和后一半时间都是X/2。然后前一半跑8*(X/2)米,后一半跑6*(X/2)米,总共加起来等于420米。所以列下方程8*(X/2)+6*(X/2)=420.解得X=60。所以后一半跑了30秒。又因为后一半为6M/S,所以后一半跑了6*30=180M。
6.二人沿一周长400米的环形跑道均速前进,甲行一圈4分钟,乙行一圈7分钟,他们同时同地同向出发,甲走10圈,改反向出发,每次甲追上乙或迎面相遇时二人都要击掌。问第十五次击掌时,甲走多长时间乙走多少路程?
答案:前10圈甲跑一圈击掌一次,即10下此时已跑了5+5/7圈;后面2人跑了2/7时击掌一次,然后2人共一圈击掌1次耗时(4+2/7)/(1/4+1/7)=30/7*(11/28)=165/98;甲共总走了40+165/98H已走了(40+165/98)*(400/7)M
小学奥数答案参考9
我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?
解答案与解析:是[10×(22-6)]千米,甲乙两地相距60千米。由此推知
追及时间=[10×(22-6)+60]÷(30-10)=220÷20=11(小时)
答:解放军在11小时后可以追上敌人。
小学奥数答案参考10
某班级有25名学生,17人参加数学竞赛,13人参加作文比赛,8人参加讲演比赛,三项比赛都参加的一个也没有。还有6个人什么比赛也没参加。有几名同学既参加作文比赛又参加讲演比赛?
答案:
因为有6个人什么比赛也没参加,所以,参加比赛的人不能超过25-6=19(人)。
假如一个人只参加一项比赛,那么参加比赛的人数应该是17+13+8=38(人)。又由于参加比赛的人数不超过19人,而且参加三项比赛的一个也没有,所以参加比赛的人数是19人,每人都参加两项活动。
19人中有17人参加了数学比赛,所以有2人既参加作文比赛又参加讲演比赛。
【小学奥数答案参考】相关文章:
初中奥数答案参考08-03
棋子的奥数题及答案参考07-25
跑步奥数题及答案参考07-26
《放牧》的奥数题及答案参考07-22
数学的奥数题及答案参考04-14
工程问题小学奥数题及答案参考07-20
小学奥数 答案07-21
小学奥数答案07-21
数卖马的奥数题及答案参考07-23