小学四年级奥数竞赛题及答案
在平时的学习中,大家都经历过考试吧,考试之前我们都需要进行充分的复习,下面是小编为大家整理的小学四年级奥数竞赛题及答案相关内容,欢迎大家分享。
小学四年级奥数竞赛题及答案1
时间路程问题:
小学四年级奥数竞赛题:甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。问他走后一半路程用了多少分钟?
时间路程答案:
解法1、全程的平均速度是每分钟(80+70)/2=75米,走完全程的时间是6000/75=80分钟,走前一半路程速度一定是80米,时间是3000/80=37.5分钟,后一半路程时间是80-37.5=42.5分钟
解法2:设走一半路程时间是x分钟,则80*x+70*x=6*1000,解方程得:x=40分钟因为80*40=3200米,大于一半路程3000米,所以走前一半路程速度都是80米,时间是3000/80=37.5分钟,后一半路程时间是40+(40-37.5)=42.5分钟
答:他走后一半路程用了42.5分钟。
小学四年级奥数竞赛题及答案2
1、烧水沏茶时,洗水壶要用1分钟,烧开水要用10分钟,洗茶壶要用2分钟,洗茶杯用2分钟,拿茶叶要用1分钟,如何安排才能尽早喝上茶。
2、有137吨货物要从甲地运往乙地,大卡车的载重量是5吨,小卡车的载重量是2吨,大卡车与小卡车每车次的耗油量分别是10公升和5公升,问如何选派车辆才能使运输耗油量最少?这时共需耗油多少升?
3、用一只平底锅烙饼,锅上只能放两个饼,烙熟饼的一面需要2分钟,两面共需4分钟,现在需要烙熟三个饼,最少需要几分钟?
4、甲、乙、丙、丁四人同时到一个小水龙头处用水,甲洗拖布需要3分钟,乙洗抹布需要2分钟,丙用桶接水需要1分钟,丁洗衣服需要10分钟,怎样安排四人的用水顺序,才能使他们所花的总时间最少,并求出这个总时间。
5、甲、乙、丙、丁四个人过桥,分别需要1分钟,2分钟,5分钟,10分钟。因为天黑,必须借助于手电筒过桥,可是他们总共只有一个手电筒,并且桥的载重能力有限,最多只能承受两个人的重量,也就是说,每次最多过两个人。现在希望可以用最短的时间过桥,怎样才能做到最短呢?你来帮他们安排一下吧。最短时间是多少分钟呢?
6、小明骑在牛背上赶牛过河,共有甲乙丙丁四头牛,甲牛过河需1分钟,乙牛需2分钟,丙牛需5分钟,丁牛需6分钟,每次只能骑一头牛,赶一头牛过河。要过河时间最少?是多少?
1.【试题】计算9+99+999+9999+99999
2【试题】计算199999+19999+1999+199+19
3【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999)
4【试题】计算9999×2222+3333×3334
5.【试题】56×3+56×27+56×96-56×57+56
6.【试题】计算98766×98768-98765×98769
小学四年级奥数竞赛题及答案3
1、父亲45岁,儿子23岁。问几年前父亲年龄是儿子的2倍?
2、李老师的年龄比刘红的2倍多8岁,李老师10年前的年龄和王刚8年后的年龄相等。问李老师和王刚各多少岁?
3、姐妹两人三年后年龄之和为27岁,妹妹现在的年龄恰好等于姐姐年龄的一半,求姐妹二人年龄各为多少。
4、小象问大象妈妈:“妈妈,我长到您现在这么大时,你有多少岁了?”妈妈回答说:“我有28岁了”。小象又问:“您像我这么大时,我有几岁呢?”妈妈回答:“你才1岁。”问大象妈妈有多少岁了?
5、大熊猫的年龄是小熊猫的3倍,再过4年,大熊猫的年龄与小熊猫年龄的和为28岁。问大、小熊猫各几岁?
6、15年前父亲年龄是儿子的7倍,10年后,父亲年龄是儿子的2倍。求父亲、儿子各多少岁。
7、王涛的爷爷比奶奶大2岁,爸爸比妈妈大2岁,全家五口人共200岁。已知爷爷年龄是王涛的5倍,爸爸年龄在四年前是王涛的4倍,问王涛全家人各是多少岁?
基本思路:
①在求出“每天新生长的草量”和“原有草量”后,已知头数求时间时,我们用“原有草量÷每天实际减少的草量(即头数与每日生长量的差)”求出天数。
②已知天数求只数时,同样需要先求出“每天新生长的草量”和“原有草量”。
③根据(“原有草量”+若干天里新生草量)÷天数”,求出只数。
基本公式:
解决牛吃草问题常用到四个基本公式,分别是∶
(1)草的生长速度=对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数÷(吃的较多天数-吃的较少天数);
(2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;
(3)吃的天数=原有草量÷(牛头数-草的生长速度);
(4)牛头数=原有草量÷吃的天数+草的生长速度
第一种:一般解法
“有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。”
一般解法:把一头牛一天所吃的牧草看作1,那么就有:
(1)27头牛6天所吃的牧草为:27×6=162(这162包括牧场原有的草和6天新长的草。)
(2)23头牛9天所吃的牧草为:23×9=207(这207包括牧场原有的草和9天新长的草。)
(3)1天新长的草为:(207-162)÷(9-6)=15
(4)牧场上原有的草为:27×6-15×6=72
(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)
所以养21头牛,12天才能把牧场上的草吃尽。
第二种:公式解法
有一片牧场,草每天都匀速生长(草每天增长量相等),如果放牧24头牛,则6天吃完牧草,如果放牧21头牛,则8天吃完牧草,假设每头牛吃草的量是相等的`。(1)如果放牧16头牛,几天可以吃完牧草?(2)要使牧草永远吃不完,最多可放多少头牛?
解答:
1)草的生长速度:(21×8-24×6)÷(8-6)=12(份)
原有草量:21×8-12×8=72(份)
16头牛可吃:72÷(16-12)=18(天)
2)要使牧草永远吃不完,则每天吃的份数不能多于草每天的生长份数
所以最多只能放12头牛。
小学四年级奥数竞赛题及答案4
题目:
学校第一批买进3个篮球和8个排球共值500元,第二批买进4个篮球和5个排球共值525元,求一个篮球、一个排球各多少元?
解析:
先列个简易的表格,整理好题目中已知的信息:
3个篮球8个排球→共500元
4个篮球5个排球→共525元
题中有两个未知的量:篮球单价和排球单价,要消去其中的一个未知量,才能求出另一个未知量。
但这一题已知条件与问题之间有着明显的空隙,不易探求,可以对条件作出符合逻辑的假设,然后根据变化了的新条件进行推理,找出解决问题的途径。假设第一批买的两种球的个数是原来的4倍,则总价也扩大了4倍;第二批买的两种球的个数都是原来的3倍,则总价也扩大3倍,得到两组新的信息:
12个篮球32个排球→共2000元
12个篮球15个排球→共1575元
在假设的情况中,两批买进的篮球的个数是一样的,正好抵消掉,第一批比第二批多了(32—15=)17个排球,多花了(2000—1575=)425元钱,即17个排球总价为425元,可以求出排球的单价。列式为:
(500×4—525×3)÷(8×4—5×3)
=(2000—1575)÷(32—15)
=425÷17
=25(元)。
把排球单价带入第一批买球的条件中,可以求出篮球的单价:
(500—25×8)÷3
=(500—200)÷3
=300÷3
=100(元)。
所以,一个篮球100元,一个排球25元。
小学四年级奥数竞赛题及答案5
题目:
某车间计划20人每天工作8小时,8天完成一批订货,后来要提起交货,改由32人工作,限4天完成,每天需要工作几小时?
解析:
先列个简易的表格,整理好题目中已知的信息:
20人8小时8天
32人?小时4天
在这个问题中工作总量是不变的。把一个人一小时的工作量看作一份工作量,220人每小时可以完成20份工作量,先求出工作总量:20×8×8=1280(份)。
32人每小时可以完成32份工作量,可以先求出每天的工作总量,再求出每天的工作时间:1280÷4÷32=10(小时);
也可以先求出总共需要多少小时,再求出每天需要多少小时:1280÷32÷4=10(小时)。
所以,每天需要工作10小时。
【小学四年级奥数竞赛题及答案】相关文章:
周期问题奥数竞赛题及答案01-19
小学奥数 答案07-06
小学奥数答案07-06
小学奥数题及答案07-07
小学奥数习题及答案07-07
小学奥数答案参考07-08
最简分数奥数竞赛题07-06
小学高等奥数习题及答案07-06
小学奥数问题和答案07-07