六年级的奥数问题
整除问题:(高等难度)
一个数除以3余2,除以5余3,除以7余2,求适合此条件的最小数。
亲爱的小朋友们,小学频道为你准备了六年级奥数题及答案:奇偶性应用(中等难度),希望大家开动脑筋,交出一份满意的答卷。加油啊!!!
奇偶性应用:(中等难度)
桌上有9只杯子,全部口朝上,每次将其中6只同时“翻转”.请说明:无论经过多少次这样的“翻转”,都不能使9只杯子全部口朝下。
奇偶性应用答案:
要使一只杯子口朝下,必须经过奇数次"翻转".要使9只杯子口全朝下,必须经过9个奇数之和次"翻转".即"翻转"的总次数为奇数.但是,按规定每次翻转6只杯子,无论经过多少次"翻转",翻转的总次数只能是偶数次.因此无论经过多少次"翻转",都不能使9只杯子全部口朝下。
整除问题答案:
这是一道古算题.它早在《孙子算经》中记有:"今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?"
关于这道题的解法,在明朝就流传着一首解题之歌:"三人同行七十稀,五树梅花廿一枝,七子团圆正半月,除百零五便得知."意思是,用除以3的'余数乘以70,用除以5的余数乘以21,用除以7的余数乘以15,再把三个乘积相加.如果这三个数的和大于105,那么就减去105,直至小于105为止.这样就可以得到满足条件的解.其解法如下:
方法1:2×70+3×21+2×15=233
233-105×2=23
符合条件的最小自然数是23。
亲爱的小朋友们,小学频道为你准备了六年级奥数题及答案:奇偶性应用(高等难度),希望大家开动脑筋,交出一份满意的答卷。加油啊!!!
奇偶性应用:(高等难度)
在圆周上有1987个珠子,给每一珠子染两次颜色,或两次全红,或两次全蓝,或一次红、一次蓝.最后统计有1987次染红,1987次染蓝.求证至少有一珠子被染上过红、蓝两种颜色。
【六年级的奥数问题】相关文章:
奥数问题07-13
奥数方程问题07-22
奥数周期问题07-22
奥数吃草问题07-13
奥数行程问题07-14
奥数专题问题07-13
奥数的盈亏问题07-13
奥数整除问题07-19
奥数问题中的盈亏问题07-12
奥数问题之还原问题07-13