四年级奥数推理运算题及答案参考
“奥数”是奥林匹克数学竞赛的简称。1934年—1935年,前苏联开始在列宁格勒和莫斯科举办中学数学竞赛,并冠以数学奥林匹克竞赛的名称,1959年在布加勒斯特举办第一届国际数学奥林匹克竞赛。以下是小编帮大家整理的四年级奥数推理运算题及答案参考,欢迎大家借鉴与参考,希望对大家有所帮助。
四年级奥数推理运算题及答案参考1
解:
分析这道题如果顺推思考,比较麻烦,很难理出头绪来.如果用倒推法进行分析,就像剥卷心菜一样层层深入,直到解决问题.
如果把于昆的叙述过程编成一道文字题:一个数减去8,加上10,再除以7,乘以4,结果是56.求这个数是多少?
把一个数用□来表示,根据题目已知条件可得到这样的等式:
{[(□-8)+10]÷7}×4=56.
如何求出□中的数呢?我们可以从结果56出发倒推回去.因为56是乘以4后得到的,而乘以4之前是56÷4=14.14是除以7后得到的,除以7之前是14×7=98.98是加10后得到的,加10以前是98-10=88.88是减8以后得到的,减8以前是88+8=96.这样倒推使问题得解.
解:{[(□-8)+10]÷7}×4=56
[(□-8)+10〕÷7=56÷4
答:于昆这次数学考试成绩是96分.
通过以上例题说明,用倒推法解题时要注意:
①从结果出发,逐步向前一步一步推理.
②在向前推理的过程中,每一步运算都是原来运算的逆运算.
③列式时注意运算顺序,正确使用括号.
四年级奥数推理运算题及答案参考2
题目:
甲买了3千克苹果,2千克梨;乙买了4千克苹果,3千克梨;丙买了3千克苹果,4千克梨。乙比甲多花5元钱,甲比丙少花了4元钱,问甲、乙、丙各花了多少钱?
解析:
先列个简易的表格,整理好题目中已知的信息:
甲:3千克苹果2千克梨→比丙少花4元
乙:4千克苹果3千克梨→比甲多花5元
丙:3千克苹果4千克梨
甲与丙比较:苹果数量相等,少买了2千克梨,少花4元钱。所以,2千克梨的价钱就是4元,可以求出梨的单价:4÷(4—2)=2(元)。
乙与甲比较:多买了1千克苹果,多买了1千克梨,多花了5元钱。所以,一千克苹果和一千克梨的总价为5元钱。前面求出梨的单价为2元,所以苹果的单价为:
[5—(3—2)×2]÷(4—3)=3(元)。
把苹果和梨的单价带入计算,可以求出三人花的钱数:
甲:3×3+2×2=13(元);
乙:4×3+3×2=18(元);
丙:3×3+4×2=17(元)。
四年级奥数推理运算题及答案参考3
饲养员小王在自家庭院里养了鸡和兔共40只,他们的脚数一共是108只,小王养的`鸡和兔各多少只?
答案与解析:
假设小王养了40只兔,一共就有4×40=160(只)脚,比实际的108只多了160-108=52(只)脚。多出的52只脚是因为把饲养的鸡理解成兔造成的,也就是每只鸡被多算了4-2=2(只)脚,因此,52里面有多少个2就会有多少只鸡,即:52÷2=26(只)鸡。兔的只数:40-26=14(只)
解:
鸡的只数:(4×40-108)÷(4-2)=26(只)
兔的只数:40-26=14(只)
答:小王饲养26只鸡,14只兔
四年级奥数推理运算题及答案参考4
比赛用的足球是由黑、白两色皮子缝制的,其中黑色皮子为正五边形,白色皮子为正六边形,并且黑色正五边形与白色正六边形的边长相等。缝制的方法是:每块黑色皮子的5条边分别与5块白色皮子的边缝在一起;每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其它白色皮子的边缝在一起。如果一个足球表面上共有12块黑色正五边形皮子,那么,这个足球应有白色正六边形皮子多少块?
答案与解析:
分析:12块黑色正五边形皮子共有12×5=60条,这60条边每一条都是与白皮子缝合在一起的。而对于白皮子来说,每块6条边,其中有3条边是与黑色皮子的边缝在一起,还有3条边则是与其它白色皮子的边缝在一起。因此,白皮子的边的总数就是黑皮子的边的总数的2倍,即共有60×2=120条边。那么,共有120/6=20块白皮子。
四年级奥数推理运算题及答案参考5
电车公司维修站有7辆电车需要维修,如果用一名工人维修这7辆电车的修复时间分别为12,17,8,18,23,30,14分钟。每辆电车每停开1分钟的经济损失是11元。现在由3名工作效率相同的维修工人各自单独工作,要是经济损失减到最小程度,那么最小的损失是多少元?
答案与解析:因为3个工人各自单独工作,工效又相同,因此,每人维修的时间应尽量相等,设需维修的车辆分别为:A、B、C、D、E、F、G,修复的时间依次是12、17、8、18、23、30、14分钟,则第一个工人应修复的车是:C、G、D;第二个工人应修复的车是:B、E;第三个工人应修复的车是:A、F。有因为要求把损失减少到最低程度,所以,每个人应尽量先修复需短时间修好的车辆,这样,可以按以下的顺序开修:第一个人:8,14,18。
四年级奥数推理运算题及答案参考6
甲、乙、丙3人共有192张邮票.从甲的邮票中取出乙那么多给乙后,再从乙的邮票中取出丙那么多给丙,最后从丙的邮票中取出甲那么多给甲,这时甲、乙、丙3人邮票数相同,甲、乙、丙原来各有多少张?
答案与解析:
甲、乙、丙原共有192张邮票,经过三次交换后,甲乙丙三人仍有邮票192张,而且三人邮票数相同,即3人各有邮票:192÷3=64(张).第三次交换从丙的邮票中取出甲那么多给甲,说明这次交换前甲有邮票64÷2=32(张),丙有邮票:64+32=96(张),依此类推,就可以推出答案了.最后相等时各有192÷3=64(张)。
四年级奥数推理运算题及答案参考7
6个人各拿一只水桶到水龙头接水,水龙头注满6个人的水桶所需时间分别是5分钟、4分钟、3分钟、10分钟、7分钟、6分钟。现在只有这一个水龙头可用,问怎样安排这6人的打水次序,可使他们总的等候时间最短?这个最短时间是多少?
答案与解析:第一个人接水时,包括他本人在内,共有6个人等候,第二个人接水时,有5个人等候;第6个人接水时,只有他1个人等候。可见,等候的人越多(一开始时),接水时间应当越短,这样总的等候时间才会最少,因此,应当把接水时间按从少到多顺序排列等候接水,这个最短时间是3×6+4×5+5×4+6×3+7×2+10=100(分)。
四年级奥数推理运算题及答案参考8
将1-13这13个自然数分别写在13张卡片上,再将这13张卡片按一定的顺序从左至右排好.然后进行如下操作:将从左数第一张和第二张依次放到最后,将第三张取出而这张卡片上的数是1;再将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是2;继续将下面的两张依次放到最后并取出下一张,取出的卡片上面的数是3……如此进行下去,直到取出最后一张是13为止.则13张卡片最初从左到右的顺序为()。
答案与解析:
这13张卡片依次是原来的第3,第6,第9,第12,第2,第7,第11,第4,第10,第5,第1,第8,第13张。
【四年级奥数推理运算题及答案参考】相关文章:
小升初奥数应用题及答案解析10-08
关于小升初数学试卷奥数真题及答案10-01
税务师考试计算题及答案10-08
小考奥数行程题经典问题及解析06-19
小升初奥数备考技巧03-25
2017高级物流师考试计算题及答案08-12
税务师考试《税法二》计算题及答案10-08
学奥数作文15篇02-23
学奥数作文(15篇)02-23
备考奥数四技巧介绍03-23