六年级整数的裂项与拆分的奥数题
题目:
若干只同样的盒子排成一列,小聪把42个同样的小球放在这些盒子里然后外出,小明从每支盒子里取出一个小球,然后把这些小球再放到小球数最少的盒子里去.再把盒子重排了一下.小聪回来,仔细查看,没有发现有人动过小球和盒子.问:一共有多少只盒子?
分析:设原来小球数最少的盒子里装有a只小球,现在增加了b只,由于小聪没有发现有人动过小球和盒子,这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.
同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.
类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,故原来那些盒子中装有的'小球数是一些连续整数.
所以将42分拆成若干个连续整数的和,一共有多少种分法,每一种分法有多少个加数,据此解答.
解:设原来小球数最少的盒子里装有a只小球,现在增加了b只,由于小聪没有发现有人动过小球和盒子,
这说明现在又有了一只装有a个小球的盒子,而这只盒子里原来装有(a+1)个小球.
同样,现在另有一个盒子装有(a+1)个小球,这只盒子里原来装有(a+2)个小球.
类推,原来还有一只盒子装有(a+3)个小球,(a+4)个小球等等,
故原来那些盒子中装有的小球数是一些连续整数.
将42分拆成若干个连续整数的和,
因为42=6×7,故可以看成7个6的和,又(7+5)+(8+4)+(9+3)是6个6,从而42=3+4+5+6+7+8+9,一共有7个加数;
又因为42=14×3,故可将42:13+14+15,一共有3个加数;
又因为42=21×2,故可将42=9+10+11+12,一共有4个加数.
所以原问题有三个解:一共有7只盒子、4只盒子或3只盒子.
答:一共有7只、4只或3只盒子.
点评:解答本题的关键是将问题归结为把42分拆成若干个连续整数的和.
【六年级整数的裂项与拆分的奥数题】相关文章:
裂项与拆分的奥数题07-23
六年级奥数整数的裂项与拆分07-22
整数拆分的奥数题07-23
奥数的整数拆分练习08-02
小学六年级奥数整数的裂项与拆分练习题07-21
有关小学奥数整数裂项问题的解答07-22
整数的裂项与拆分六年级奥数数论题07-20
整数拆分奥数综合解析07-25
奥数整数拆分专题练习08-01