小学五年级奥数问题及解析
牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:可供25头牛吃几天?
考点:牛吃草问题.
分析:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新生长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的.即:
(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的.
(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量.
(3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天.
解答:解:设1头牛1天吃的`草为“1“,由条件可知,前后两次青草的问题相差为10×20-15×10=50.
为什么会多出这50呢?这是第二次比第一次多的那(20-10)=10天生长出来的,所以每天生长的青草为50÷10=5.
现从另一个角度去理解,这个牧场每天生长的青草正好可以满足5头牛吃.由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(10-5)×20=100.
那么:第一次吃草量20×10=200,第二次吃草量,15×10=150;
每天生长草量50÷10=5.
原有草量(10-5)×20=100或200-5×20=100.
25头牛分两组,5头去吃生长的草,其余20头去吃原有的草那么100÷20=5(天).
答:可供25头牛吃5天.
点评:解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题中所求的问题.
这类问题的基本数量关系是:
1、(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草量.
2、牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草.
【小学五年级奥数问题及解析】相关文章:
小学奥数相遇问题及解析07-31
小学奥数问题解析07-22
相遇问题奥数解析07-26
奥数工程问题的解析07-13
牛吃草问题小学奥数解析07-23
小学奥数“牛吃草问题”解析07-21
植树问题奥数题与解析07-29
楼梯问题奥数习题及解析07-24
相遇奥数问题解析07-22