最简分数奥数竞赛题
1、最简分数奥数竞赛题:从1,2,3,4,5,6,7,8中选出一些数(至少选一个,不能不选),使它们的和为4的倍数,一共有几种方法?
2、一个回文数是指从首位数读到末位数,与从末位数读到首位数都相同的数(例如:11511,22222,10001)。请问可被11整除的五位数的回文数个数与全部五位数的回文数的个数之比是多少?答案请用最简分数表示。
1.从1,2,3,4,5,6,7,8中选出一些数(至少选一个,不能不选),使它们的.和为4的倍数,一共有几种方法?
解答:先从3,4,5,6,7,8中随便选几个(可以不选)。之后根据在3,4,5,6,7,8中选出数的和除以4的余数来决定选不选1,2,方法如下:若那个和除以4余1则1,2都选;余2则选2不选1;余3则选1不选2;余0则都不选。这样总共有2的6次方共64种方法,但是其中有一种一个数都不选的方法,需要去掉,故满足条件的选法有63种。
2.一个回文数是指从首位数读到末位数,与从末位数读到首位数都相同的数(例如:11511,22222,10001)。请问可被11整除的五位数的回文数个数与全部五位数的回文数的个数之比是多少?答案请用最简分数表示。
解答:五位回文数的一般形式为ABCDE,所以五位回文数共有9×10×10=900个。若五位回文数能被11整除,则2a+c与2b的差是11的倍数,即2a+c-2b=11,2a+c-2b=22,2b-(2a+c)=11或2b=2a+c。
若2a+c-2b=11,则c为奇数,当c=1时,a-b=5,b=0,1,2,3,4;当c=3时,a-b=4,b=0,1,2,3,4,5;当c=5时,a-b=3,b=0,1,2,3,4,5,6;当c=7时,a-b=2,b=0,1,2,3,4,5,6,7;当c=9时,a-b=1,b=0,1,2,3,4,5,6,7,8。共35个数。
若2a+c-2b=22,则c为偶数,且不小于4,当c=4时,a-b=9,b=0;当c=6时,a-b=8,b=0,1;当c=8时,a-b=7,b=0,1,2。共6个数。
若2b-(2a+c)=11,则c为奇数,当c=1时,b-a=6,a=1,2,3;当c=3时,b-a=7,a=1,2;当c=5时,b-a=8,a=1;c=7或9时,a和b无法同时为1位数,所以共有6个数。
若2b=2a+c,则c为偶数,当c=0时,a=b,a=1,2,3,4,5,6,7,8,9;当c=2时,b=a+1,a=1,2,3,4,5,6,7,8;当c=4时,b=a+2,a=1,2,3,4,5,6,7;当c=6时,b=a+3,a=1,2,3,4,5,6;当c=8时,b=a+4,a=1,2,3,4,5。共35个数。
所以能被11整除的五位回文数有35+6+6+35=82个,与全部五位回文数的个数之比为41/450
【最简分数奥数竞赛题】相关文章:
奥数题最简分数07-26
六年级奥数题最简分数答案08-07
最简分数小学六年级奥数题及答案08-03
周期问题奥数竞赛题及答案01-19
初一奥数竞赛题分析指导03-23
最牛的奥数奶奶范文08-02
我最崇拜的奥数老师07-29
什么是奥数及奥数的意义01-26
奥数题最值问题的总结07-20