关于初中奥数题
地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各
取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?
不能
1、9、15、31的平均数是14
因为每操作一次改变一次奇偶性
即:第奇次操作后每堆数量是偶数
第偶次操作后每堆数量是奇数
所以,需要奇数次操作
又因为,它们除以3的余数分别是1,0,0,1,结果都是2
而每一次操作后有奇数堆(3堆)改变余数结果
所以,要有偶数堆改变余数结果需要偶数次操作
在本题中,4堆都要改变,所以需偶数次操作
矛盾,所以结果是不可能的
下面是几何
Ⅰ四边形ABCD中,对角线AC、BD交于点O,E、F分别是AB、CD的中点,连结EF交BD、AC于M、N,若AC=BD,求证:OM=ON
Ⅱ四边形ABCD中,E、F、P、Q分别是AD、BC、BD、AC的'中点,M、N分别是PB、QC的中点,求证EF平分MN。
Ⅲ四边形ABCD中,AB=CD,E、F分别是AD、BC的中点,BA延长线交FE延长线于点G,CD延长线交FE延长线于点H。求证:,∠BGF=∠CHF。
Ⅳ在△ABC中,D、E分别是AB、AC的中点,延长BC到M,N是BM的中点,H是EN的中点,连结DH交BM于F。求证:CF=FM
Ⅴ△ABC中,∠B=2∠C,AD⊥BC,E是BC中点,求证:AB=2DE
Ⅵ梯形ABCD中,AB平行DC,∠D+∠C=90°,E、F分别是AB、DC的中点,求证:EF=1/2(DC-AB)
Ⅶ已知AH是△ABC中∠BAC的角平分线,在AB、AC上分别截取BD=CE,M是DE的中点,N是BC的中点,求证:MN平行AH
Ⅸ已知,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,CM⊥BC交BD延长线于M,MF⊥AB于F。求证:BE=EF
以下主要用到平行四边形的基本性质和角平分线定理(若AD平分角BAC,交BC于D,则AB/AC=BD/BC。证明也是用中位线的。)
I 过D作AC的平行线,过C作AD的平行线,二者相交于G,延长EF交DG于H。则ACGD是平行四边形,从而对角线AG与CD互相平分,于是A、F、G三点共线且EF是三角形ABG的中位线。这样,EF平行于BG,角DMH=角DBG,角DHM=角DGB。但是DG=AC=BD,所以三角形DBG是等腰三角形,于是角DBG=角DGB,得到角DMH=角DHM。又因为DG平行于AC,角DHM=角ONM,而角DMH与角OMN是对顶角,从而角ONM=角 OMN,得到OM=ON。
II 由中位线性质可知,EPFQ是平行四边形,从而EF平分PQ。设EF交PQ于O,则ON是三角形QPC的中位线,于是ON平行于CP且 ON=1/2(CP)。另外,FM是三角形BPC的中位线,于是FM平行于CP且FM=1/2(CP)。这样,FMON是平行四边形,对角线互相平分,于是FO平分MN,也即EF平分MN。
III 将三角形DEH旋转180度,使得D与A重合。设C、H、F分别变成I,J,K。则角IKE=角CFE,从而IK平行于BF。但是BF=FC=IK,于是 BF与IK平行且相等,即:BFKI是平行四边形,于是BI平行于JG。于是角AIB=角AJG,角ABI=角AGJ。此时由于AI=CD=AB,角 AIB=角ABI,于是角AJG=角AGJ。但是角AJG=角DHE,于是角DHE=角AGJ,也即角BGF=角CHF。
【初中奥数题】相关文章:
初中奥数题精选07-30
初中奥数题的例子07-29
趣味奥数题07-26
时间的奥数题07-23
经典的奥数题及答案07-19
做奥数题07-30
小学奥数题07-31
数列的奥数题07-28
初中奥数题目十题01-26