小学奥数牛吃草问题
奥数相对比较深,数学奥林匹克活动的蓬勃发展,极大地激发了广大少年儿童学习数学的兴趣,成为引导少年积极向上,主动探索,健康成长的一项有益活动。有许多涉及到实际应用的问题,如计数、图论、逻辑、抽屉原理等。解决这类问题,一般都需要对实际问题的数学意义进行分析、归纳,把实际问题抽象成为数学问题,然后用相应的数学知识和方法去解决。下面是小编整理的小学奥数牛吃草问题的内容,一起来看看吧。
小学奥数牛吃草问题1
有一个蓄水池装有9根水管,其中一根为进水管,其余8根为相同的出水管.进水管以均匀的速度不停地向这个蓄水池注水.后来有人想打开出水管,使池内的水全部排光(这时池内已注入了一些水).如果把8根出水管全部打开,需3小时把池内的水全部排光;如果仅打开5根出水管,需6小时把池内的水全部排光.问要想在4.5小时内把池内的水全部排光,需同时打开几个出水管?
考点:牛吃草问题.
分析:假设打开一根出水管每小时可排水“1份”,那么8根出水管开3小时共排出水8×3=24(份);5根出水管开6小时共排出水5×6=30(份);两种情况比较,可知3小时内进水管放进的水是30-24=6(份);进水管每小时放进的水是6÷3=2(份);在4.5小时内,池内原有的水加上进水管放进的水,共有8×3+(4.5-3)×2=27(份).由此解答即可.
解:设打开一根出水管每小时可排出水“1份”,8根出水管开3小时共排出水8×3=24(份);5根出水管开6小时共排出水5×6=30(份).
30-24=6(份),这6份是“6-3=3”小时内进水管放进的水.
(30-24)÷(6-3)=6÷3=2(份),这“2份”就是进水管每小时进的水.
[8×3+(4.5-3)×2]÷4.5
=[24+1.5×2]÷4.5
=27÷4.5
=6(根)
答:需同时打开6根出水管.
点评:此题属于牛吃草问题,解答关键是把打开一根出水管每小时可排水“1份”,进一步分析推理求解.
小学奥数牛吃草问题2
【第一篇】
有一牧场,已知养牛27头,6天把草吃尽;养牛23头,9天把草吃尽。如果养牛21头,那么几天能把牧场上的草吃尽呢?并且牧场上的草是不断生长的。
一般方法:先假设1头牛1天所吃的牧草为1,那么就有:
(1)27头牛6天所吃的牧草为:27×6=162 (这162包括牧场原有的草和6天新长的草。)
(2)23头牛9天所吃的牧草为:23×9=207 (这207包括牧场原有的草和9天新长的草。)
(3)1天新长的草为:(207-162)÷(9-6)=15
(4)牧场上原有的草为:27×6-15×6=72
(5)每天新长的草足够15头牛吃,21头牛减去15头,剩下6头吃原牧场的草:72÷(21-15)=72÷6=12(天)
所以养21头牛,12天才能把牧场上的草吃尽
公式解法:
(1)草的生长速度=(207-162)÷(9-6)=15
(2)牧场上原有草=(27-15)×6=72
再把题目中的21头牛分成两部分,一部分15头牛去吃新长的草(因为新长的草每天长15份,刚好可供15头牛吃,剩下(21-15=6)头牛吃原有草:72÷(21-15)=72÷6=12(天))所以养21头牛,12天才能把牧场上的草吃完。
方程解答:
设草的生长速度为每天x份,利用牧场上的原有草是不变的列方程,则有 27×6-6x =23×9-9x
解出x=15份
再设21头牛,需要x天吃完,同样是根据原有草不变的量来列方程: 27×6-6×15 =23×9-9×15=(21-15)x
解出x=12(天)
所以养21头牛。12天可以吃完所有的草。
【第二篇】
一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水8小时淘完.如果要求2小时淘完,要安排多少人淘水?
分析 与解答这类问题,都有它共同的特点,即总水量随漏水的延长而增加.所以总水量是个变量.而单位时间内漏进船的水的增长量是不变的.船内原有的水量(即发现船漏水时船内已有的水量)也是不变的量.对于这个问题我们换一个角度进行分析。
如果设每个人每小时的淘水量为“1个单位”.则船内原有水量与3小时内漏水总量之和等于每人每小时淘水量×时间×人数,即1×3×10=30.
船内原有水量与8小时漏水量之和为1×5×8=40。
每小时的漏水量等于8小时与3小时总水量之差÷时间差,即(40-30)÷(8-3)=2(即每小时漏进水量为2个单位,相当于每小时2人的淘水量)。
船内原有的水量等于10人3小时淘出的总水量-3小时漏进水量.3小时漏进水量相当于3×2=6人1小时淘水量.所以船内原有水量为30-(2×3)=24。
如果这些水(24个单位)要2小时淘完,则需24÷2=12(人),但与此同时,每小时的漏进水量又要安排2人淘出,因此共需12+2=14(人)。
从以上这两个例题看出,不管从哪一个角度来分析问题,都必须求出原有的量及单位时间内增加的量,这两个量是不变的量.有了这两个量,问题就容易解决了。
【第三篇】
12头牛28天可以吃完10公亩牧场上全部牧草,21头牛63天可以吃完30公亩牧场上全部牧草.多少头牛126天可以吃完72公亩牧场上全部牧草(每公亩牧场上原有草量相等,且每公亩牧场上每天生长草量相等)?
分析 解题的关键在于求出一公亩一天新生长的草量可供几头牛吃一天,一公亩原有的草量可供几头牛吃一天。
12头牛28天吃完10公亩牧场上的牧草.相当于一公亩原来的牧草加上28天新生长的草可供33.6头牛吃一天(12×28÷10=33.6)。
21头牛63天吃完30公亩牧场上的牧草,相当于一公亩原有的草加上63天新生长的草可供44.1头牛吃一天(63×21÷30=44.l)。
一公亩一天新生长的牧草可供0.3头牛吃一天,即
(44.l-33.6)÷(63-28)=0.3(头)。
一公亩原有的牧草可供25.2头牛吃一天,即
33.6-0.3×28=25.2(头)。
72公亩原有牧草可供14.4头牛吃126天.即
72×25.2÷126=14.4(头)。
72公亩每天新生长的草量可供21.6头牛吃一天.即
72×0.3=21.6(头)。
所以72公亩牧场上的牧草共可以供36(=14.4+21.6)头牛吃126天.问题得解。
解:一公亩一天新生长草量可供多少头牛吃一天?
(63×2i÷30-12×28÷10)÷(63-28)=0.3(头)。
一公亩原有牧草可供多少头牛吃一天?
12×28÷10-0.3×28=25.2(头)。
72公亩的牧草可供多少头牛吃126天?
72×25.2÷126+72×0.3=36(头)。
答:72公亩的牧草可供36头牛吃126天。
【第四篇】
一块草地,每天生长的速度相同.现在这片牧草可供16头牛吃20天,或者供80只羊吃12天.如果一头牛一天的吃草量等于4只羊一天的吃草量,那么10头牛与60只羊一起吃可以吃多少天?
分析 由于1头牛每天的吃草量等于4只羊每天的吃草量,故60只羊每天的吃草量和15头牛每天吃草量相等,80只羊每天吃草量与20头牛每天吃草量相等。
解:60只羊每天吃草量相当多少头牛每天的吃草量?
60÷4=15(头)。
草地原有草量与20天新生长草量可供多少头牛吃一天?
16×20=320(头)。
80只羊12天的吃草量供多少头牛吃一天?
(80÷4)×12=240(头)。
每天新生长的草够多少头牛吃一天?
(320-240)÷(20-12)=10(头)。
原有草量够多少头牛吃一天?
320-(20×10)=120(头)。
原有草量可供10头牛与60只羊吃几天?
120÷(60÷4+10-10)=8(天)。
答:这块草场可供10头牛和60只羊吃8天。
小学奥数牛吃草问题3
一、基本思路
假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
二、基本特点
原草量和新草生长速度是不变的;
三、关键问题
确定两个不变的量。
四、基本公式
生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);
总草量=较长时间×长时间牛头数-较长时间×生长量;
五、解题口诀
每牛每天的吃草量假设是份数1,
A头B天的吃草量算出是几?
M头N天的吃草量又是几?
大的减去小的,除以二者对应的天数的差值,
结果就是草的生长速率。
原有的草量依此反推。
公式就是A头B天的吃草量减去B天乘以草的生长速率。
将未知吃草量的牛分为两个部分:
一小部分先吃新草,个数就是草的比率;
有的.草量除以剩余的牛数就将需要的天数求知。
小学奥数牛吃草问题4
有一片牧场,草每天都在均匀的生长。如果在牧场上放养24头牛,那么6天就可以把草吃完;如果放养21头牛,8天可以把草吃完。那么:
(1)要让草永远吃不完,最多放养多少头牛;
(2)如果放养36头牛,多少天可以把草吃完?
牛吃草答案:
(1)设1头牛1天的吃草量为"1",那么天生长的草量为
所以,每天生长的草量为
也就是说,每天生长的草量可以供12头牛吃1天。那么要让草永远也吃不完,最多放养12头牛。
(2)原有草量,可供36头牛吃。
小学奥数牛吃草问题5
第一部分:例题
1、牧场上有一片青草,每天都在匀速生长,这片青草可供10头吃上20天,可供15头牛吃上10天,问供25头牛可以吃多少天?
2、牧场上有一片青草,每天都在匀速生长,这片青草可供10头吃上20天,可供15头牛吃上10天,问可以供多少头牛吃上5天?
3、由于天气逐渐冷起来,牧场上的草不仅不增加,反而以固定的速度在减少。已知某块草地上的草可供20头牛吃5天或可供15头牛吃6天,照此计算可供多少头牛吃10天?
4、有一片青草,每天的生长速度都是相同的,已知这片青草可供15头牛吃20天,或者是供76头牛吃12天,如果一头牛的吃草量等于4只羊的吃草量,那么8头牛与64只羊一起吃,可以吃上多少天?
5、经测算,地球上的资源可供100亿人生活100年或者是可供80亿人生活300年,假设地球每年新生长的资源是一定的,为了使资源不致减少,地球上最多生活多少人?
6、某车站在检票前若干分钟就开始排队,每分钟来的旅客是一样多(人数),若同时打开4个检票口,从开始检票到等候童老师奥数检票的队伍消失,需要30分钟,同时开5个检票口的话,需要20分钟。如果同时打开7个检票口的话,那么需要多少分钟?
7、甲、乙、丙三辆车同时从同一地点出发,沿同一公路追赶前面的一骑自行车的人,这三辆车分别用3小时、5小时、6小时追上骑自行车的人,现在知道甲车每小时行了24千米,乙车每小时行20千米,你能知道丙车每小时多少千米?
8、有一牧场长满牧草,每天牧场匀速生长。这个牧场可供17头牛吃30天,可供19头牛吃24天。现有若干头牛吃草,6天后,4头牛死亡,余下的牛吃了2天将草吃完,求原有牛的头数。
9、一只船发现漏水时,已经进了一些水了,水是匀速进入船内,如果10人淘水的话,3小时可以淘完;如果是5人淘水的话,8小时可以完成。如果要求2小时淘完,要安排多少人淘水?
10、武钢的煤场,可储存全厂45天的用煤量。当煤场无煤时,如果用2辆卡车去运,则除了供应全厂用煤外,5天可将煤场储满;如果用4辆小卡车去运,那么9天可将煤场储满。如果用2辆大卡车和4辆小卡车同时去运,只需几天就能将煤厂储满?(假设全厂每天用煤量相等。)
11、自动扶梯以均匀的速度往上行驶着,两个性急的小孩子要从扶梯上,已知男孩每分钟走20级扶梯,女孩每分钟走15级扶梯,结果男孩用了5分钟到达扶梯顶,女孩则用了 6分钟到达扶梯顶,问扶梯一共多少级?
12、两只蜗牛由于耐不住阳光的照射,从井顶逃向井底。白天往下爬,两只蜗牛白天爬行的速度是不相同的,一只每天爬20分米,另一只爬15分米。黑夜里往下滑,两只蜗牛滑行的速度是相同的。结果一只蜗牛恰好用了5个昼夜到达了井底,另外一只蜗牛恰好用了6个昼夜到达井底。求井深?
武汉童老师奥数中心,真正原创有价值,全面,经典,基础到培优。通过此讲义的训练,可以达到掌握牛吃草问题的学习效果,不妨下载来分享和学习。
13、12头牛28天能吃完10公顷牧场上的全部牧场,21头牛63天能吃完30公顷牧场上的全部牧草。如果每公顷牧场上原有的草量相等,每公顷牧场上每天草生长量是相同,那么,多少头牛126天可以吃完72公顷牧场上的全部牧草?
14、两个顽皮的孩子逆着自动扶梯行驶的方向童老师奥数一对一上门行走,男孩每秒可以走3级阶梯,女孩每秒可走2级阶梯。结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒。问该扶梯一共有多少级?
第二部分:练习
1、牧场上有一片牧草,可以供27头牛吃6天,供23头牛吃9天,如果每天牧场生长的速度相同,那么这片牧场可以供21头牛吃几天?
2、有一口井,井底有泉水不断地涌出,每分钟涌出的水量相等。如果用4台抽水机来抽水,40分钟就可以完成;如果用5台抽水机来抽水,30分钟可以抽完。现在要求24分钟内抽完井水,需要多少台抽水机?
3、一只船有一个漏洞,水以匀速的速度进入船内,发现漏洞时已经进入了一些水,如果用12个人一起舀水,3小时可以完成,如果用5个人的话,那么10小时才完成。现在要求2小时舀完水,那么需要多少人?
4、有一个酒槽,每日泄露等量的酒量。如让6个人饮,则4天可以饮完,如让4人饮,则5天可以喝完。若每人的饮酒量是相同的,问每天的漏酒量是多少?
5、一个水池安装有武汉童老师排水武汉三镇上门授课量相等的排水管若干根,一根进水管不断地往水池里放水,平均每分钟进水量是相等的。如果开放三根排水管的话,45分钟就可把池中的水放完;如果开放5根排水管,25分钟就可以把池水排完。如果开放八根排水管的话,那么几分钟排完池中的水?
6、某个游乐场在开门前400人排队等候,开门后每分钟来的人数是固定的,一个入口每分钟可以进入10个游客,如果开放4个入口,20分钟就没有人来排队。现在开放6个入口,那么开门后多少分钟就没有人排队?
7、有一片草地,草每天生长的速度相同。这片草地可供5头牛吃40天;或者是供6头牛吃上30天,如果4头牛吃了30天后,又增加了2头牛一起来吃,这片草地可以再吃几天?
8、一个水库的贮水量是一定的,河水均匀进入水库,5台抽水机连续20天可以把水库的水抽干;6台抽水机连续15天可把水库的水抽干;如果要求6天抽干水库,需配几台抽水机?
9、有一块牧场上长满了草,每天草匀速地生长。这块牧场上的草可以供给17头牛吃25天,也可以供给15头牛吃草30天。开始时有一些牛在牧场上吃草,8天后,有5头牛被卖了,余下的牛用2天时间将牧场上余下的草吃完。求开始有多少头牛在吃草?
10、20xx年夏天我国某地区遭遇了严重干旱,政府为了解决村民饮水问题,在山下的一眼泉水旁修了一个蓄水池,每小时有40立方米泉水注入池中。第一周开动5台抽水机,2.5小时就把一池水抽完;接着第二周开动8台抽水机,1.5小时就把一池水抽完。后来由于旱情严重,开动13台抽水机同时供水,请问这时几小时可以把这池水抽完?
小学奥数牛吃草问题6
牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.问:可供25头牛吃几天?
考点:牛吃草问题.
分析:这类题难就难在牧场上草的数量每天都在发生变化,我们要想办法从变化当中找到不变的量.总草量可以分为牧场上原有的草和新生长出来的草两部分.牧场上原有的草是不变的,新长出的草虽然在变化,因为是匀速生长,所以这片草地每天新长出的草的数量相同,即每天新长出的草是不变的.即:
(1)每天新长出的草量是通过已知的两种不同情况吃掉的总草量的差及吃的天数的差计算出来的.
(2)在已知的两种情况中,任选一种,假定其中几头牛专吃新长出的草,由剩下的牛吃原有的草,根据吃的天数可以计算出原有的草量.
(3)在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草,根据原有的草量可以计算出能吃几天.
解答:解:设1头牛1天吃的草为“1“,由条件可知,前后两次青草的问题相差为10×20-15×10=50.
为什么会多出这50呢?这是第二次比第一次多的那(20-10)=10天生长出来的,所以每天生长的青草为50÷10=5.
现从另一个角度去理解,这个牧场每天生长的青草正好可以满足5头牛吃.由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(10-5)×20=100.
那么:第一次吃草量20×10=200,第二次吃草量,15×10=150;
每天生长草量50÷10=5.
原有草量(10-5)×20=100或200-5×20=100.
25头牛分两组,5头去吃生长的草,其余20头去吃原有的草那么100÷20=5(天).
答:可供25头牛吃5天.
点评:解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题中所求的问题.
这类问题的基本数量关系是:
1、(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草量.
2、牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草.
小学奥数牛吃草问题7
一个牧场长满青草,牛在吃草而草又在不断生长,已知牛27头,6天把草吃尽,同样一片牧场,牛23头,9天把草吃尽。如果有牛21头,几天能把草吃尽?
摘录条件:
27头6天原有草+6天生长草
23头9天原有草+9天生长草
21头?天原有草+?天生长草
解答:解答这类问题关键是要抓住牧场青草总量的变化。设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为23×9—27×6=45。为什么会多出这45呢?这是第二次比第一次多的那(9—6)=3天生长出来的,所以每天生长的青草为45÷3=15
现从另一个角度去理解,这个牧场每天生长的青草正好可以满足15头牛吃。由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?
(27—15)×6=72
那么:第一次吃草量27×6=162第二次吃草量23×9=207
每天生长草量45÷3=15
原有草量(27—15)×6=72或162—15×6=72
【小学奥数牛吃草问题】相关文章:
小升初牛吃草问题应用题及答案11-10
小考奥数行程题经典问题及解析06-19
小升初奥数备考技巧03-25
小升初奥数应用题和差问题解题思路11-15
小升初奥数应用题10-07
学奥数作文3篇12-30
备考奥数四技巧介绍03-23
备考小升初奥数四技巧03-22
做奥数题的启示小学生作文12-18
阅读推荐《从课本到奥数》02-04